
On Path Planning using Point-based Minkowski

Sum for Rigid Robots

Abhishek Ninad Kulkarni

Worcester Polytechnic Institute

Email: ankulkarni@wpi.edu

Abstract—In this paper, we address the problem of efficient
computation of complete Configuration Space (C-space), for a
rigid robot in an environment with polygonal (or polyhedral)
obstacles. We introduce a new distributed O(n) algorithm for
the computation of Minkowski Sum (M-Sum) that only depends
on the geometry of obstacle and not its dimensions. We achieve
this by using the sampling theory to reduce the geometric
and computational complexity of the problem and then proving
that the output of the proposed algorithm approximates the
true M-Sum within a finite error, which depends on the initial
sampling density. This makes the use of complete, deterministic
roadmap algorithms for solving the problem of path planning
feasible in real-time. We prove the correctness of the pro-
posed algorithm in this paper and provide two examples to
illustrate how it works and to demonstrate how to solve the
path planning problem for a mobile robot using this algo-
rithm. An implementation of this algorithm can be found at
https://github.com/abhibp1993/point-based-msum.git

I. INTRODUCTION

Path-planning is a fundamental and well-studied problem

in robotics. Several approaches have been proposed so far,

ranging from purely geometric solutions to sampling based

solutions. However, finding a complete algorithm suitable for

solving the problem in real-time is still an open problem. We

attempt to address this problem in the following paper.

The complete algorithms have a desirable property of find-

ing a solution or reporting a failure within a finite amount

of time. The deterministic roadmap algorithms like Visibility

Graph, Generalized Voronoi Graph (GVG) are the examples

of complete algorithms. However, it is noted that while these

algorithms are computationally efficient, they require a com-

plete representation of C-space, which is a computationally

expensive operation. It is known that M-Sum computation

grows exponentially as the dimensionality increases [] and so

does the dependent complete path-planning algorithms[1].

On the contrary, the probabilistically complete algorithms

like RRT* sample randomly in the C-space and perform

collision checking in task-space. We note that the use of

sampling theory makes these algorithms more computation

friendly. This, however, results in loss of completeness, i.e.

a probabilistically complete algorithm may take infinite time

to converge to a solution, and may never terminate if it does

not exist.

In this work, we integrate the aforementioned two observa-

tions about the complete algorithms and use of sampling theory

in probabilistically complete algorithms into an algorithm that

is complete as well as computationally efficient. We achieve

this by sampling over the robot and obstacle boundaries in

task-space to directly capture the collision information instead

of sampling in C-space.

A. Literature Review

The configuration space (C-space) is a fundamental concept

in motion planning. It represents the set of transformations that

can be applied to robot. Therefore, by finding a continuous

path from a start to goal in configuration space, we get the

sequence of transformations that must be applied to move the

robot to a desired configuration. The configurations of the

robot that result in collision define the obstacle-space (C-obs).

Note that C-obs is always contained in C-space.

a) Roadmaps: Given the complete C-space with explicit

representation of C-obs, the roadmap algorithms like Visibility

Map, Generalized Voronoi Diagram provide a simple and

efficient way to find a path from start to goal configuration. It

is known that these algorithms have polynomial runtime; for

example, the visibility map algorithm can be implemented in

O(n2log(n)) [2], and are known to be complete [3].

b) Sampling-based Motion Planning: Sampling based

approaches avoid explicit construction of C-space and have

been proved to be useful in many cases. The algorithms exploit

the collision detection algorithms, which detect whether a

given configuration is in collision or not by randomly sampling

the C-space. If the sampled configuration results in collision,

then it is ignored else it is used to construct a path to the goal.

Algorithms like RRT, Bi-RRT, RRT* are based on this

approach. Most of these algorithms suffer from a major

disadvantage of being probabilistically complete, i.e. they will

eventually find a path, if it exists. However, they may run

forever, if the path does not exist.

c) Minkowski Sum: Minkowski sum defines the transfor-

mation from the workspace to the configuration space. Several

algorithms have been proposed over the past years for efficient

computation of M-sum. If P and A are two N-dimensional

polytopes with m and n edges respectively, then it is proved

that the Minkowski sum can have a O(m + n), O(mn) or

O(m2n2) edges based on whether P , A are convex or concave

polyhedra, and in worst case can consume O(m3n3)-time. [2],

[4], [5]. Furthermore, we note that these algorithms are not

parallelization-friendly.

d) Point-based Minkowski Sum: To achieve faster com-

putation, Lien [6] introduces the concept of sampling the

boundaries of polyhedra, computing the M-sum and then

https://github.com/abhibp1993/point-based-msum.git

reconstructing the geometric boundary of the sum from point

set. This results in a O(mnTf ilter) algorithm, where the Tf ilter

is the time complexity of processing a single sample point.

This also exposes a parallelization-friendly structure, because

each sample point can be processed independently. The work

in this project is largely inspired by Lien’s work.

The paper is further organized as follows. The next section

II introduces the basic notation. The following section III

formalizes the problem statement. The section IV explains

the proposed algorithm and proves its correctness. Finally

the section V presents two experiments to demonstrate the

algorithm, and we conclude with some discussion about future

directions in the section VI.

II. PRELIMINARIES

As mentioned in the introduction, we sample the robot and

obstacle in task-space. Therefore, in this paper, we consider the

robot and obstacles that are either polygons or polyhedra. We

note that the proposed algorithm and related theorems apply

to any closed geometric shapes in 2D or 3D. Throughout the

paper, we shall denote the polygonal (or polyhedral) robot by

A and obstacle by P . Further, we shall denote the geometric

boundaries of A and P by ∂A and ∂P respectively.

We use equispaced sampling for generating the point-

samples of robot and obstacle. This choice is motivated by

the resultant simplifications in the following analysis.

Definition 1 (Equispaced Sampling in 2D). Let f (x), x∈ [0,1]
represent a finite-length curve in 2D Cartesian space. Let

x1,x2, ...,xn be points satisfying f (xi) = 0, i = 1,2, ...,n. We

say xi to be equispaced samples of f , if and only if ∃h > 0

such that x1 = f (0) and xn = f (1) and ∀i, xi+1 = xi + h. We

denote the set of x1,x2, ...,xn by S(f).
For a straight line in 2D, the set of n equispaced samples

can be trivially by represented as xi+1 = xi +
1
n
. For non-

trivial polynomial curves, such samples may be generated

using Chebyshev polynomial interpolation [7].

The boundaries of surfaces in 3D are 2D surfaces. There-

fore, we slightly abuse the notation and define equispaced

points on a surface in 3D Cartesian space over a triangulation

of the surface. A triangulation is defined as the division of

surface into a set of triangles (in 3D) such that each triangle

side is entirely shared by two adjacent triangles [8]. It must

be noted that only compact surfaces are triangulation-friendly,

therefore, we will make this assumption in the following paper.

Definition 2 (Equispaced Sampling in 3D). Let △ABC be a

triangle. Let the sides of △ABC satisfy the relation l(AB) <

l(BC) < l(CA). Let S(AB) = xAB
i and S(BC) = xBC

i for

i = 1,2, ...,n denote the equispaced samples of AB and BC

respectively. Then the equispaced sample △ABC is defined as

S(ABC) =S(AB)∪S(AB)∪S(AB)∪ (
n⋃

i=1

S(xAB
i xBC

i)).

The cumulative equispaced sample of the surface is defined

to be the union of equispaced samples of each triangle in

its triangulation. It may be noted that above definition uses

Basic Proportionality Theorem (BPT) to recursively generate

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1: δ -Sample of Triangle and Concave Polygon

0
2

0.5

1

1.5 3

1.5

2

1 2

2.5

3

0.5 1

0 0

Fig. 2: δ -Sample of Tetrahedron

the point-samples inside the triangle. Also, if the given surface

to be sampled is a polygon in 3D, then Delaunay Triangulation

provides an efficient algorithm for triangulation of surface [2].

Finally, we define a δ -sample of a curve in 2D as its

equispaced sample such that h < 2δ . Similarly, for a 3D

surface, we call a equispaced sample as δ -sample if smallest

side of each triangle in its triangulation is a δ -sample. See

Fig. 1, 2.

Next, we define the notions of convex and concave sets

in 2D, 3D. A closed set S in 2D or 3D Cartesian space is

called convex if and only if for any arbitrary two points in

S, the line joining the points lies entirely in the interior of

S. A non-convex set with no self-intersecting edges is called

concave set. Convex and concave polygons are convex sets

with straight edges.

Given a set S of arbitrary n-points in a plane, the convex

hull of S is defined as intersection of all closed half-planes

that contain all points in S [9]. The concave-hull or α-hull is

the generalization of convex hull, by introducing a parameter

α . It is defined as follows.

Definition 3 (Equispaced Sampling in 3D). (Adopted from

[9]) Let S be a set of n-points in a plane. Let α < 0 be a real

number. The α-hull of S is defined as intersection of all closed

Fig. 3: Concave Hull of Set of Points (Adopted from [9])

complements of discs of radius 1/α that contain all points in

S.

Figure 3 shows a typical α-hull or concave-hull of a set of

points. We also note that α = 0 results in convex-hull of S.

The idea of concave-hull will be used for reconstructing the

geometric shape of M-Sum from the point sample.

We finally define the M-Sum operation over two sets A

and P as

M = A ⊕P = {⊣+√ | ⊣ ∈ A ⊣\⌈ √ ∈ P} (1)

where a and p are points contained in the sets A and P

respectively.

We note that, for robot motion planning, the obstacle in

C-space is represented by −A ⊕P where −A is inversion

operation of A about its origin. Based on whether A and P

are convex or concave sets, we have the following results.

Theorem 1 (M-Sum of Convex Sets). Let A and P be two

convex sets. Then, the M-Sum M =−A ⊕P is convex.

Proof. The proof follows naturally by observing that an arbi-

trary set S is convex if it satisfies S = tS+(1− t)S, f ort ∈
[0,1]. Therefore, we can write the M-Sum as A ⊕ P =
⊔(A ⊕P)+(∞−⊔)(A ⊕P) = (⊔A +(∞−⊔)A)⊕⊔P+
(∞−⊔)P .

For polygons or polyhedra, using the above theorem the

M-Sum operation reduces to computing the vector sum of

vertices.

With these definition, we next formulate the problem state-

ment.

III. PROBLEM FORMULATION

In this paper, we restrict ourselves to polygonal or polyhe-

dral robots and obstacles for simplicity in analysis. However,

it can be noted that the presented results naturally generalize

to any compact surfaces in 2D or 3D.

Fig. 4: Proposed Methodology for M-Sum

Let A and P represent polygonal (or polyhedral) robot

and obstacle respectively. The sets A and P can be convex

or concave. Then our objectives can be stated as follows:

• Use sampling theory effectively to introduce parallelism

into the M-Sum computation.

• Propose a framework for efficiently computing M-Sum

M , given A and P .

• Prove the equivalence of the proposed method with true

M-Sum.

IV. SOLUTION APPROACH

We propose a three step process as shown in 4. The sam-

pling block inputs the robot and obstacle polygons (or poly-

hedra), A and P , and outputs the boundary point-samples

S(A) and S(P) respectively. The Distributed Minkowski

Sum block computes the point-based M-Sum and returns a

point-sample, S(M). The final Reconstruction block recon-

structs the geometric boundary represented by point-sample,

M̃ . Note that, to prove the equivalence, we need to show that

M̃ ≈ M .

We start by demonstrating how to reduce the computations

required for M-Sum algorithm.

Lemma 1 (Sufficiency of Boundary). The boundary of the

resultant M-Sum, S(M), of A and P is defined only by the

points in S(A) and S(P).

Proof. The proof uses the concept of winding number. Using

the argument as presented in [10], it can be shown that the

winding number of point p with respect to the M-Sum, M ,

is equal to product of individual polygon tracings, i.e. closed

polygonal loops around the point.

Therefore, for every point in the interior of A or P , the

corresponding point in M will lie in the interior of the M ,

and similar argument applies to every exterior point of A and

P . Therefore, every boundary point on M must be vector

sum of a one point each from A and P .

The Lemma 1 essentially reduces the problem of computing

M-Sum for each interior point in A and P to computing

the M-Sum for each point on the respective boundary sets,

S(A) and S(P). Next, we show a relation between sampling

density of S(A) and S(P) and the resultant density in

S(M).

Lemma 2 (M-Sum is δ -sample). Let S(A) and S(P) be

two δ -samples. Then the M-Sum, S(M), is also a δ -sample.

Proof. We note from 1 that in the M-Sum of A and P , every

point on A boundary is summed with every point on boundary

of P . Consider the M-Sum of the edge-sample of A with a

point from P . It can be clearly seen that, for every point in

M , which is sum of point from selected edge-sample and the

point, there exists a point closer than 2δ distance from it. This

above argument follows directly from definition of δ -sample

and M-Sum. Hence the lemma holds true.

Next we show that, it is possible to accurately reconstruct

the boundary of a delta sample by choosing appropriate

parameter, α , for concave hull construction.

Theorem 2 (α = δ). The boundary of a δ -sample can be

reconstructed faithfully by using α = δ .

Proof. The proof follows naturally by the definition of α-hull.

Corollary 1 (Reconstruction Error is Bounded by δ). For

any point p on δ -hull M̃ , the error from true M-Sum M is

bounded by δ .

Proof. By definition of α-hull, all points that lie on a disc of

radius α or closer are included in reconstructed boundary. By

Theorem 2, we have all points on δ -sample will lie on the

reconstructed boundary of M-Sum. Therefore, the sampling

error in the original polygons (or polyhedra) is unaffected

during the M-Sum computation as per proposed method, and

therefore is equal to δ .

With Theorem 2, Corollary 1, we can now guarantee that

the proposed method will compute the M-Sum boundary of

given two polygons (or polyhedra), within a bounded error.

A. Complexity Analysis

We observe that use of sampling introduces parallelism

into the solution and permits use of distributed computing.

Given two point-samples of robot and obstacle S(A) and

S(P), we observe that the M-Sum computation requires to

compute vector sum of each point a in robot point-sample

S(A) with every point p in obstacle point sample S(P). This

appears as a nested loop structure. However, we observe for

two points a1 and a2 in S(A), a1⊕S(P) and a2⊕S(P) are

independent of each other. Therefore, it possible to distribute

this computation over independent threads. Therefore, the

time-complexity of M-Sum is O(N) where N is the number

of points in S(P).

The complexity of α-hull is known to be O(N logN) for 2D

and O(N2) in higher dimensions [9].

V. EXPERIMENTS

We illustrate the method with two examples. The first ex-

periment demonstrates each step in proposed method, namely

sampling, point-based M-Sum and reconstruction. The second

experiment demonstrates a complete motion planning solution

using the proposed method for a ground based mobile robot.

Fig. 5: Sample of Tetrahedral Robot and Concave 3D Obstacle

Fig. 6: Concave Hull of Generated M-Sum Point-Sample

A. Experiment 1: 3D Robot without Rotation

Consider a tetrahedral robot and obstacle given by

A = {(′, ′, ′),(∋, ′, ′),(∞,∈, ′),(∈,∞,∋)} (2)

P = {} (3)

We choose tetrahedron for this illustration, as the facets

are inherently triangles, thus, eliminating need for explicit

triangulation of surfaces. The robot and its δ -sample is shown

in Fig. 5.

Next, we compute the point-based M-Sum using MAT-

LAB’s Parallel Computing Toolbox with 4 threads. The output

after computing α-hull with α = δ on computed M-Sum point-

sample is shown in the Fig 6.

B. Experiment 2: Mobile Robot Path Planning

In this section, we shall illustrate how the path planning

problem can be solved in a complete manner using the

proposed algorithm for point-based M-Sum computation.

-2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Fig. 7: Position of Mobile Robot and Obstacle

Fig. 8: Twisted Tower Representation of Configuration Space

with Path shown in Red.

Consider a triangular robot and concave obstacle as

shown in Fig. 7. The coordinates of robot are given by

{(0,0),(0.5,−0.5),(0,0.5)}, while the obstacle coordinates

are {(1,1),(3,3),(1,2),(−1,3)}.

To compute a path plan for the robot to go from config-

uration (x,y,θ) = (1,−3,0) to goal configuration (x,y,θ) =
(2,5,π), we compute the M-Sum using the proposed algo-

rithm.

In this problem, we use a bug-like algorithm where, in

C-space, we try to take steps of predefined size towards the

goal from given start configuration by moving along the line

directly joining them. If we collide, i.e. the step leads to a

point inside the concave hull of the computed M-Sum point-

sample then we generate a graph using the points lying on

boundary of concave hull of the M-Sum point-sample. The

edges of this graph are defined by the edges of triangulation

of the boundary points. We then find the path as shown in Fig.

9.

We note that it is possible to use deterministic and complete

algorithms like cell decomposition or visibility graphs to find

collision-free path in the given scenario.

VI. DISCUSSION AND CONCLUSION

We have proposed an algorithm for computation of M-Sum

that supports parallelism and runs in O(N)-time. It may be

noted that N grows with the increase in perimeter or surface

area of obstacle, based on whether we are dealing with 2D

or 3D space. This means, that the improvement in the time-

complexity is achieved at the expense of memory resources.

However, by use of shared memory in distributed computing

this computation takes relatively less time and thus, may be

possible to be used in a real-time application as demonstrated

in Experiment V-B.

We have presented the proof-of-concept for this method in

this paper. The Theorem 2 and Corollary 1 prove that the pro-

posed algorithm can generate sufficiently close approximation

of the M-Sum by choosing appropriate value of δ .

We further note that, in practical robotics application, we

may not need to generate the point-sample for the obstacle.

This sample is available from the point-cloud generated by

proximity sensors like depth-cameras or LIDARs. Thus, it is

possible to update the C-space directly as these points become

available in real-time. Furthermore, for each new observed

-2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Fig. 9: Path in Task-Space

point, it takes O(1)-time to project it into the C-space, which

make the proposed algorithm ideal for active sensing based

planning approaches.

The future work for this project involves to design a

complete motion planning framework, which uses the raw

point-cloud data and returns plans the motion for robot in

real-time and implement it on a real robot.

REFERENCES

[1] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha, “A simple al-
gorithm for complete motion planning of translating polyhedral robots,”
The International Journal of Robotics Research, vol. 25, no. 11, pp.
1049–1070, 2006.

[2] J. o’Rourke, Computational geometry in C. Cambridge university press,
1998.

[3] H. M. Choset, Principles of robot motion: theory, algorithms, and

implementation. MIT press, 2005.
[4] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning

collision-free paths among polyhedral obstacles,” Commun. ACM,
vol. 22, no. 10, pp. 560–570, Oct. 1979. [Online]. Available:
http://doi.acm.org/10.1145/359156.359164

[5] D. Halperin, “Robust geometric computing in motion,” The International
Journal of Robotics Research, vol. 21, no. 3, pp. 219–232, 2002.

[6] J.-M. Lien, “Point-based minkowski sum boundary,” in Computer

Graphics and Applications, 2007. PG’07. 15th Pacific Conference on.
IEEE, 2007, pp. 261–270.

[7] G. W. Stewart, Afternotes on numerical analysis. SIAM, 1996.
[8] “Wolfram math: Triangulation.” [Online]. Available:

http://mathworld.wolfram.com/Triangulation.html
[9] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a set of

points in the plane,” IEEE Transactions on information theory, vol. 29,
no. 4, pp. 551–559, 1983.

[10] G. Ramkumar, “An algorithm to compute the minkowski sum outer-
face of two simple polygons,” in Proceedings of the twelfth annual

symposium on Computational geometry. ACM, 1996, pp. 234–241.
[11] F. Aurenhammer, “Voronoi diagramsa survey of a fundamental geomet-

ric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp.
345–405, 1991.

[12] J.-C. Latombe, Robot motion planning. Springer Science & Business
Media, 2012, vol. 124.

[13] Matlab - alphashapes. [Online]. Available:
https://www.mathworks.com/help/matlab/ref/alphashape.html

http://doi.acm.org/10.1145/359156.359164
http://mathworld.wolfram.com/Triangulation.html
https://www.mathworks.com/help/matlab/ref/alphashape.html

	Introduction
	Literature Review

	Preliminaries
	Problem Formulation
	Solution Approach
	Complexity Analysis

	Experiments
	Experiment 1: 3D Robot without Rotation
	Experiment 2: Mobile Robot Path Planning

	Discussion and Conclusion
	References

