
Sequential Decision Making in Games with
Incomplete Information

Abhishek N. Kulkarni

Ph.D. Dissertation

2

Abstract

Sequential decision-making in non-cooperative games is an indispensable skill for autonomous agents to
achieve complex temporal objectives in dynamic, uncontrolled environments in presence of other strategic
agents. This dissertation studies the problem of synthesizing winning strategies in games with incomplete
information played on graphs—a class of games that has received limited attention, yet holds significant
implications in domains such as robotics, economics, and artificial intelligence.

We investigate the synthesis problem under two kinds of incomplete information. In two-player games,
we consider situations where an adversary (P2) has incomplete information about the action capabilities or
objectives of the agent (P1) or how P1 interprets the history of their interaction. We show that, in such
situations, P1 may synthesize a deceptive strategy to satisfy its omega-regular objective that exploits P2’s
incomplete information to gain a strategic advantage. However, the effectiveness of a deceptive strategy
depends on the level of awareness of P2 about its incomplete information.

We develop hypergame theory for games on graphs by introducing two models: static and dynamic hy-
pergames on graphs, which model situations where P2’s information remains constant or evolves during the
interaction. These models capture interactions where both players play according to their subjective views
of their interaction constructed using the information they know. We introduce new solution concepts to
analyze the rational behavior of players within hypergames, based on which we identify the conditions for
the use of deception to be advantageous for P1 and design algorithms to synthesize the deceptive winning
strategies under various assumptions on P2’s incomplete information.

In single-player stochastic games, we study planning with incomplete preferences over omega-regular ob-
jectives, where the player may lack information about its own preferences. Decision-making is challenging in
this setting because incomplete preferences do not always admit a utility representation, which renders clas-
sical decision theory inapplicable. We introduce a novel framework for planning with incomplete preferences
over linear temporal logic objectives that include a preference language, an automata-theoretic computational
model, and algorithms to synthesize preference-satisfying strategies under two new solution concepts.

3

4

Acknowledgements

I want to begin by expressing my deepest gratitude to my advisor, Prof. Jie Fu. Over the course of the past six
years, she has been an exceptional guide and source of inspiration. Prof. Fu has consistently encouraged me
to pursue my research interests with unwavering support, enabling me to delve into a diverse array of topics,
ranging from theoretical concepts in game theory and formal methods to the practical realms of cybersecurity
and robotics. Her dedication to helping me find my own unique voice as a researcher has been pivotal to my
growth throughout my PhD journey. I am indebted to her for her meticulous feedback on my work and our
thought-provoking discussions, which have been marked by originality, precision, and enlightening insights.

I would like to thank the members of my dissertation committee, Prof. Sean Meyn, Prof. Tuba Yavuz, and
Prof. Yu Wang, and the members of my PhD qualifying exam committee, Prof. Carlo Pinciroli from Worcester
Polytechnic Institute and Dr. Mitchell Colby from Scientific Systems Company Inc. Their insights and advice
have been valuable in shaping the course of my academic journey.

I extend my heartfelt appreciation to all my coauthors, including Dr. Charles A. Kamhoua, Dr. Nandi
O. Leslie, Prof. Shuo Han, Dr. Hazhar Rahmani, Dr. Lening Li, Haoxiang Ma, Sumukha Udupa, Matthew
Cohen, Huan Luo, Yash Shukla, Dr. Robert Wright, Dr. Alvaro Velasquez, Dr. Jivko Sinapov, Dr. Siddharth
Patki, Dr. Satish R. Inamdar, Prof. Madhuri Joshi, and Prof. Anita S. Joshi. Their invaluable contributions and
the enlightening discussions we shared were instrumental in bringing my research to fruition. Collaborating
with Dr. Kamhoua was a truly delightful experience, and I gained countless insights into the domain of
cyber-physical systems security through our discussion. I am deeply grateful for his steadfast support of my
research and his invaluable mentorship. I am deeply indebted to Prof. Inamdar, who played a pivotal role in
acquainting me with the domain of research and introducing me to the concept of cyber-physical systems.
This introduction served as the underpinning for the research that forms the core of this dissertation.

I express my gratitude to the members of the Control and Intelligent Robotics Lab (CIRL) for enriching my
research journey with their engaging discussions on intriguing new challenges. Their close-knit collaboration
has made our research dialogues not only productive but also enjoyable. I am also grateful to the wonder-
ful conferences that I have had the privilege to attend, including the Conference on Decision and Control
(CDC), American Control Conference (ACC), International Joint Conference on Artificial Intelligence (IJCAI),
Conference on Decision and Game Theory for Security (GameSec), and International Conference on Robotics
and Automation (ICRA). These conferences have provided me with invaluable opportunities to engage with
leading researchers in my field.

My family has been an endless source of love, affection, support and motivation for me. My father, Ninad
Kulkarni, has been instrumental in igniting my passion for mathematics and research, my mother, Snehal
Kulkarni, gave me the most important lesson in life, that of handling failures, and my wife, Sanika Patki, has
been a source of great emotional support and encouragement during the ups and downs of the PhD life. It is
the blessings and belief of my grandparents in my abilities through the years that has given me the strength
to pursue my dreams, even at times when they seemed unrealizable.

I extend my heartfelt gratitude to Prof. Prakash Mulbagal, my mathematics mentor at M. Prakash Academy
in Pune, India. Under his guidance, my passion for mathematics was nurtured, and he inspired me to set forth
on the trajectory towards a career in research and development. Perhaps the most profound lesson imparted

5

by Prakash Sir was the philosophy of effective learning, serving as the bedrock upon which I embarked on my
journey in the fields of mathematics and science. This journey ultimately culminated in the research presented
in this dissertation.

I would also like to express my gratitude to Prof. Milind Patwardhan, Prof. Pushkar Joglekar, Prof. Milind
Kamble, and Prof. Mrunal Shidore for their mentorship, encouragement, and unwavering support. Their guid-
ance has played a pivotal role in my transformation from being solely an admirer of theoretical concepts to
someone who also values the practical implications of theory. Engaging in conversations with Prof. Patward-
han about the practical intricacies of robot functionality and concurrently discussing the theoretical facets of
motion planning with Prof. Joglekar struck the perfect balance which motivated me to not only delve into
theory or practice but also to bridge the gap between them. This approach laid the foundation for my thought
process. I’d also like to extend my appreciation to Monica Patel, Aditya Joshi, and Shruti Phadke for their
numerous insightful discussions and enjoyable moments, which not only contributed to my personal growth
but also provided vital support during challenging personal trials.

In the course of the last seven years, I have been exceptionally fortunate to discover a close-knit commu-
nity among the friends I made in the United States, including Krunal Chaudhari, Kritika Iyer, Ankur Agrawal,
Anand Parwal, Aashima Parwal, Adhavan Jayabalan, Kenechukwu Mbanisi, Ishita Ankit, and Shubham Jain.
From the philosophical discussions on the existence of God to contemplating the future of robotics and AI,
our conversations have spanned a wide spectrum of topics that have profoundly impacted on my approach
to research. This group has become like a second family to me, and it’s thanks to them that my PhD journey
has been an overwhelmingly positive experience.

Last but not the least, I want to thank my funding sources, DARPA, ARL, NSF, and Dr. Glenn Yee Schol-
arship, for supporting my PhD.

6

Contents

Abstract 3

Acknowledgements 5

1 Introduction 11
1.1 Aim of this Dissertation . 13
1.2 Contributions of this Dissertation. 16

2 Background on Game and HypergameTheory 19
2.1 Games on Graphs . 19
2.2 Temporal Logic and Automata . 22
2.3 Hypergame Theory . 23

3 Synthesis with Misperception of Labeling Function 25
3.1 Effect of Labeling Misperception . 25
3.2 Static Hypergame on Graph . 26

3.2.1 Stealthy Deceptive Sure Winning Strategy . 27
3.2.2 Stealthy Deceptive Almost-Sure Winning Strategy . 28

3.3 Decoy Allocation Problem . 29
3.3.1 Modeling and Problem Formulation . 29
3.3.2 P2’s Subjectively Rationalizable Strategy . 31
3.3.3 Stealthy Deceptive Sure Winning Strategy . 32
3.3.4 Stealthy Deceptive Almost-Sure Winning Strategy . 34
3.3.5 Compositional Synthesis for Decoy Placement . 37
3.3.6 Experimental Evaluation . 41

4 Synthesis with Misperception of Action Capabilities 47
4.1 Effect of Action Misperception . 47
4.2 Dynamic Hypergame on Graph . 48

4.2.1 P2’s Subjectively Rationalizable Strategy . 50
4.2.2 Deceptive Sure Winning Strategy . 51
4.2.3 Deceptive Almost-Sure Winning Strategy . 52

4.3 Case Study: Capture-the-Flag Game on Gridworld . 55

5 Synthesis with Misperception of Specifications 59
5.1 Opportunistic Strategies in Games with Specification Misperception 59

5.1.1 Effect of Specification Misperception on Ignorant P2 59
5.1.2 Static Hypergame on Graph . 60
5.1.3 Characterization of State Space . 61

7

CONTENTS

5.1.4 Synthesis of Opportunistic Strategy . 63
5.1.5 Case Study: Robot Motion Planning . 65

5.2 Deceptive Strategies under Specification Misperception . 67
5.2.1 Effect of Specification Misperception on Informed P2 67
5.2.2 Dynamic Hypergame on Graph . 68
5.2.3 Synthesis of Deceptive Strategy . 69
5.2.4 Case study: Robot Motion Planning . 72

6 Planning with Incomplete Preferences over Temporal Goals 79
6.1 PrefScLTL: A Language to Specify Preferences over Temporal Objectives 79
6.2 Preference Automaton . 81
6.3 Solution Concepts . 83
6.4 Synthesis of Opportunistic Preference Satisfying Strategies . 85
6.5 Example: Robot Motion Planning in Stochastic Gridworld . 88

7 Conclusion and Perspectives 91
7.1 Achievements and Perspectives . 91
7.2 Future Work . 92

Bibliography 95

8

List of Figures

3.1 Base game considered in the running example. 30
3.2 Perceptual games when the state s7 is a fake target. 33
3.3 Hypergame on graph constructed based on P1 and P2’s perceptual games. 34
3.4 A scenario where DASWin1(X,Y) ⊊ DASWin1(X,Y). 37
3.5 Gridworld example with Tom and Jerry with 2 cheese blocks. 41
3.6 The value of deception obtained by placing traps and fake targets under stealthy deceptive

sure and almost-sure winning conditions in four selected games. 44
3.7 The values of deception compared by algorithm in each of the two iterations to determine the

two decoys for scenarios (A)-(C). 45

4.1 An example game on graph. 49
4.2 Perceptual game of P2 when P2 misperceives P1’s action set to be X0 = {a2}. 50
4.3 The dynamic hypergame on graph given P1’s and P2’s perceptual games. 50
4.4 An example of capture-the-flag game between P1 (superman) and P2 (devil) played over a

5× 5 grid world. 55
4.5 The deterministic finite automaton (DFA)s equivalent to the scLTL formulas. 56

5.1 State space characterization. 62
5.2 Game arena. 65
5.3 The automaton for ¬O U X , where X ∈ {A,B}. 66
5.4 Two configurations of gridworld considered in the examples. 73
5.5 The task automaton. 74
5.6 Three key steps of deception in the simulation. 75
5.7 The task completion rates of P1 given P2 with k-step delay in reallocating traps, for k = 0, 1, 2, 3. 76
5.8 The likelihood ratio λ for online interaction between P1 and P2. 77

6.1 Toy example to illustrate the limitation of almost-sure winning solution concept for preference-
based planning. 84

6.2 A gridworld example in which the black arrows with no-entry symbol denote the disabled
actions from that state and green arrows show the random outcomes on entering the cell. . . 89

9

LIST OF FIGURES

10

Chapter 1

Introduction

The ability of sequential decision making is central to human cognition. It enables individuals to tackle in-
tricate problems, adapt to dynamic environments, interact effectively with others, manage risks, and work
toward long-term goals by making a series of interconnected choices. For instance, in a game of chess, a
player determines their next move by anticipating multiple rounds of moves and potential counter-moves of
their opponent. As autonomous agents become an integral part of human society, it is imperative for these
agents to exhibit proficiency in making competent and strategic sequential decisions.

Game theory provides a theoretical framework to study sequential decision making problems. It focuses
on the analysis of rational decision making of agents involved in strategic interactions within a stochastic
environment in presence of other strategic and self-interested agents. Game theory offers a suite of math-
ematical tools, including models that can capture interactions between one or more players under various
scenarios, and solution concepts that define the conditions on what constitutes rational behavior for players
within the game. For instance, the simplest class of games called normal-form games consist of “one-step”
games, in which players select their strategies simultaneously, and the outcomes are determined by a payoff
matrix specifying the payoffs associated with all possible strategy combinations. The game ends once the
players choose their actions. However, a considerable subset of games evolve over time and in a stateful man-
ner, and the payoffs received by the players depend on the history of interactions. In such games, the ability
of players to make strategic sequential decisions is crucial to achieve a desirable outcome.

Games on graphs. A game played on a graph (for short, a game on graph) is a model used to study sequen-
tial interactions between one or more players that evolve over time in a stateful manner. They have garnered
significant attention in various domains, including cybersecurity [1]–[4], adversarial robot motion planning
[5], [6], and discrete event systems [7], [8], among others. These games can represent non-terminating inter-
actions that evolve indefinitely, advancing through an unbounded number of rounds. Within this model, each
game state corresponds to a node within the graph, and during each round, players make strategic choices
that trigger transitions to successor nodes through edges. An outcome of these non-terminating games is
represented by the infinite path in the graph defined by the strategies of the players. In this dissertation,
we focus on reachability and safety ω-regular games on graphs [9], i.e., the class of games in which players’
objectives are characterized by an ω-regular language. A language containing infinite words is ω-regular if it
can be expressed by a finite Büchi automaton. Specifically, we reachability consider objectives specified using
a fragment of Linear Temporal Logic (LTL) called syntactically cosafe LTL (scLTL) [10], which can express
ω-regular languages representable by a terminal Büchi automaton, and safety objectives specified using LTL,
which can express ω-regular languages representable by a monitor.

Types of games. Games are categorized into four types based on two factors: whether all players have
perfect information, and whether all players have complete information. In a game with imperfect information

11

[11], [12], one or more players have partial or limited knowledge about the history of game states or the actions
executed by other players. The models such as Partially Observable Markov Decision Processes (POMDPs)
[13] and Partially Observable Stochastic Games (POSGs) [14] are noteworthy examples of games on graphs
with imperfect information.

On the other hand, in a game with incomplete information [11], [15], one or more players have partial
or limited knowledge about at least one of the following components of the game: (a) players’ action ca-
pabilities, (b) players’ objectives, (c) the game rules, (f) what one player knows about the other player, and
what the other player knows about the information known to the first player, and so on …. When a player’s
knowledge is incomplete regarding their own capabilities or objectives, the incompleteness in the game is
termed as interoceptive. In contrast, when a player’s knowledge is incomplete concerning the external envi-
ronment, encompassing aspects such as game rules, other players’ capabilities, or objectives, it is referred to
as exteroceptive.

The synthesis problem. A central problem about games on graphs is to synthesize winning strategies for
a player. A strategy is said to be winning if following it guarantees that the player will satisfy its ω-regular
objective regardless of the strategies employed by other players. However, the notion of “winning” in games
on graphs varies depending on which solution concept is used to analyze the game. In this research, we
focus on the qualitative solution concepts of sure, almost-sure, and positive winning [9]. A sure winning
strategy guarantees the player that its objective will be accomplished in a finite number of steps. An almost-
sure winning strategy provides the player with the assurance of achieving their objective with a probability
one, while a positive winning strategy assures the player that its objective will be realized with a positive
probability.

Literature on games on graphs with exteroceptive incomplete information. The synthesis problem
has received significant attention in theoretical computer science and control systems for the class of games
on graphs with perfect or imperfect, but complete, information. In analyzing these games, three questions
are considered to be fundamental. First, whether the game is determined, i.e., whether one of the players has
a strategy to win (i.e., satisfy its ω-regular objective) regardless of the strategy employed by the opponent?
Determinacy is valuable in solving the synthesis problem because it allows for transitioning between the
viewpoints of the two players: For example, if P1 does not have a winning strategy from a state, then the
determinacy property guarantees that P2 has a winning strategy from that state. Interested readers may find
a detailed discussion on determinacy in [16]. Second, does there exist an algorithm to characterize state space,
i.e., to identify which player wins from a given state? This assists in designing winning strategies; for example,
a winning strategy to satisfy a safety objective must reject any action that leads to an opponent’s winning
state. Lastly, does there exists an algorithm to synthesize the winning strategy for a player from each of its
winning states. If yes, then what is the computational complexity of such an algorithm?

Games on graphs with perfect and complete information. The answers to the above questions depend
largely on the class of game on graph and the solution concept being considered. In case of games on graphs
with perfect and complete information, it is known that the deterministic as well as stochastic turn-based
variants are qualitatively determined [17], but their concurrent counterparts are not1 [19], [20]. Regarding the
characterization of state space, the solution concepts of sure and almost-sure winning are known to coincide
for the deterministic turn-based games. This means that the set of winning states for either of the players
remains the same regardless of which solution concept is employed to analyze the game. This is not the case
with either stochastic turn-based games or concurrent games. In fact, for concurrent games, the strategies
that use randomization are more powerful than the deterministic (i.e., pure) strategies [9]. Therefore, the

1Note that stochastic concurrent games exhibit quantitative determinacy but lack qualitative determinacy. Quantitative determi-
nacy involves computing the maximal probability with which a player can win in the limit from each state [18].

12

1.1 Aim of this Dissertation

number of winning states for one player may be greater under almost-sure winning concept when compared
to that under sure winning. Lastly, the algorithms to synthesize winning strategies are known for most sub-
classes of games on graphs with perfect and complete information. A few noteworthy algorithms include the
linear-time algorithm for ω-regular reachability games [21], and polynomial-time algorithms for stochastic
turn-based games and concurrent games with both qualitative reachability and more general parity objectives,
as discussed in [9], [19].

Games on graphs with imperfect but complete information. Seminal works by Reif [12], [22] es-
tablished the foundational framework for studying games on graphs with imperfect information. In these
seminal works, Reif introduced a subset construction methodology to transform games with imperfect infor-
mation into those characterized by perfect and complete information. This approach established the way for
synthesizing winning strategies under the sure winning concept, specifically for the deterministic turn-based
games on graphs. Subsequently, research demonstrated that all turn-based and concurrent games with imper-
fect information are determined when players employ randomized strategies, but are not determined when
deterministic strategies are employed. The subset construction, however, results in an exponential blowup
of state space, resulting in the majority of algorithms for synthesizing winning strategies in these games to
have at least exponential time and space complexity. The synthesis algorithms were first presented for par-
tially observable Markov decision processes (POMDP), which represent a class of single-player games with
imperfect information. Subsequently, a series of works [23]–[25] expanded these algorithms to address two-
player games on graphs involving one-sided imperfect information. Recently, Bertrand et al. [16] introduced
a doubly exponential algorithm for games featuring two-sided partial observation, while Gripon and Serre
[26] extended these findings to encompass games where players may not observe the history of actions in
addition to the history of states.

1.1 Aim of this Dissertation

In contrast to games on graphs with either perfect or imperfect information, sequential decision making in
games on graphs with incomplete information has received little attention. The aim of this dissertation is to
address this gap. Let us first understand the reason behind this gap by reviewing the literature on normal-form
and extensive games with incomplete information.

Games on graphs with incomplete but perfect information. Two models are commonly used to repre-
sent games with incomplete information: Bayesian games [11] and hypergames [27]. Among these, Bayesian
games are widely recognized as the standard model of games with incomplete information in game theory.
This can be attributed to the foundational work by Harsanyi [11], in which he argued that any game with
incomplete information can be equivalently transformed into a game with imperfect (but complete) infor-
mation. The transformation entails assigning a type to each player in a game with incomplete information,
where the type corresponds to their private information. Subsequently, assuming that all players know the
set of potential types, the players maintain a subjective probability distribution over this set. During interac-
tion, they update this distribution based on observations to infer the true type from the history of a player’s
decisions. To establish the initial distribution, Harsanyi’s framework relies on the critical assumption that
all players share a common prior distribution. In their seminal work, Mertens and Zamir [28] relaxed this
assumption by introducing the notion of a universal belief space. This work established that Harsanyi’s model
can indeed represent all kinds of games with incomplete information. The development of the Bayesian games
model for repeated games, which represents a class of sequential interactions consisting of a number of repe-
titions of the same base game, was introduced by Aumann et al. [29]. There are three widely studied solution
concepts for Bayesian games: The Bayesian Nash equilibrium [30] extends the concept of Nash equilibrium
to normal-form games with incomplete information. The correlated equilibrium [29] represents the Nash

13

1.1 Aim of this Dissertation

equilibrium of a game extended by the inclusion of random events, about which players possess partial in-
formation. The perfect Bayesian equilibrium (PBE) [31] refines the Bayesian Nash equilibrium, particularly
tailored for extensive-form games marked by incomplete information.

In contrast, hypergames [27] offer a framework capable of modeling games in which some players may
be misinformed of some aspects of their interaction or remain unaware of their own and other players’ mis-
perceptions. Conceptually, a hypergame integrates the subjective views of all players about the game. Con-
sequently, players can have distinct perceptions of the game without necessitating the assumption of com-
mon prior knowledge. Both normal-form and extensive-form versions of hypergames have been extensively
explored in the literature [32]–[34], particularly within contexts of conflicts [35]–[37] and deception [34],
[38]–[41]. Several solution concepts have been proposed for hypergames including the Nash equilibrium,
hyper-Nash equilibrium, Fraser-Hipel equilibrium, Stackelberg equilibrium, and subjective rationalizability
[32], [42]. An in-depth discussion about solution concepts and relations among them is studied in [32].

Challenges to study games on graphswith incomplete information. Although, theoretically, Bayesian
games can model every kind of incompleteness, we argue that they might not be the best choice to study the
synthesis problem in games on graphs with incomplete information. We highlight three reasons for our hy-
pothesis.

First, the assumption that the set of possible types is common knowledge for all players is unreasonable in
many situations, especially those involving conflicts [40] or unawareness [43]. This assumption, in addition to
the assumption of common prior, have been widely debated in economics and game theory communities [44],
[45]. For instance, in cybersecurity, an attacker may not be aware about defender’s use of honeypatches, which
are patched vulnerabilities that appear like unpatched vulnerabilities to the attacker [46]. In this situation,
the attacker cannot know the possible types of defenders.

Second, in the games where common prior assumption does not hold, the existing solution concepts for
Bayesian games provide limited insight [47]. This is highlighted by the transformation from a hierarchical
hypergame to a Bayesian game proposed by Sasaki and Kijima [47]. Through this transformation, the authors
show that the solution concept of subjective rationalizability in hypergame coincides with that of Bayesian
Nash equilibrium in its Bayesian representation, and the best response equilibrium in hypergame corresponds
to Nash equilibrium in its Bayesian representation. However, the equivalent counterparts of the hypergame
solution concepts such as Fraser-Hipel equilibrium [48], [49], or hyper-Nash equilibrium [50], [51] are not
known.

Lastly, Harsanyi’s approach to transform a game with incomplete information into one with imperfect
information might not be effective for games on graphs due to the complexity of solving games on graphs
with imperfect information. Last but not the least, the Bayesian games are inherently quantitative in nature
and, therefore, are not best suited for solving the synthesis problem using qualitative solution concepts.

A large part of this dissertation is dedicated to developing the hypergame theory for two-player games on
graphs, in which the ego player, P1, is aware that its adversary, P2, lacks knowledge about some component
of the game. Formally, the first of the two research questions posed in this dissertation is stated as follows.

ResearchQuestion I

In a two-player game on graph with one-sided incomplete information, where P1 has complete and
P2 has incomplete information, how to synthesize strategies for P1 that are provably-correct with
respect to given ω-regular specifications and which leverage P1’s knowledge about P2’s incomplete
information to gain strategic advantage over P2?

Literature on games on graphs with interoceptive incomplete information. In games with intero-
ceptive incomplete information, players lack full knowledge of their own capabilities or objectives. This

14

1.1 Aim of this Dissertation

dissertation focuses on a specific category of single-player stochastic games on graph, also known as Markov
Decision Process (MDP). In these games, the objective is to synthesize a strategy that achieves the most desir-
able goal, considering an incomplete preference over a set of ω-regular reachability objectives. A preference
relation over a set of alternatives is said to be complete if the ordering between every possible pair is alterna-
tives is well-defined. In other words, the preference relation can compare and rank any pair of alternatives
and make a clear decision based on their preferences [52]. On the other hand, as preference relation is said
to be incomplete if the relation is unable to rank or compare certain alternatives. The problem of making
rational decisions to achieve most desirable goals given a preference relation is studied widely in the domain
of preference-based planning [53].

Literature on preference-based planning. The literature on preference-based planning can be classified
into four parts based on the whether the preference relation is complete or incomplete, and whether the
environment is deterministic or stochastic. Planning with preferences over temporal goals in deterministic
environment is a well-studied problem for both complete and incomplete preferences (see [53] for a survey).
For preferences specified over temporal goals, the authors in [54] proposed a logical language for specifying
preferences over the evolution of states and actions to synthesize a deterministic plan while the works [55]–
[57] explored the minimum violation planning approaches that decide which low-priority constraints should
be violated in a deterministic system, when not all objectives can be satisfied simultaneously. Mehdipour et
al. [58] associate weights with Boolean and temporal operators in signal temporal logic to specify the impor-
tance of satisfying the sub-formula and priority in the timing of satisfaction. This reduces the preference-based
planning problem to maximizing the weighted satisfaction in deterministic dynamical systems.

However, the solutions to the preference-based planning problem for deterministic systems cannot be
applied to stochastic systems. This is because, sequential decision making with preferences requires the agent
to transform a preference over a set of high-level temporal goal into a preference over strategies. Thus, by
following the most-preferred strategy, the player would be guaranteed to achieve the most desirable goal.
Now, in stochastic environments, even a deterministic strategy yields a distribution over outcomes satisfied by
the resulting paths. Therefore, to determine which strategy is better, we need a way to compare distributions
over paths instead of comparing two paths2, which is what the deterministic planners do.

Several works have studied the preference-based planning problem in stochastic environments. But al-
most all of them assume the preferences to be complete. Lahijanian and Kwiatkowska [59] considered the
problem of revising a given specification to improve the probability of satisfaction of the specification. They
formulated the problem as a multi-objective MDP problem that trades off minimizing the cost of revision and
maximizing the probability of satisfying the revised formula. Li et al [60] solve a preference-based proba-
bilistic planning problem by reducing it to a multi-objective model checking problem. The only work that
studies the problem of probabilistic planning with incomplete preferences was presented by Fu [61], in which
she introduces the notion of the value of preference satisfaction for planning within a predefined finite time
duration and developed a mixed-integer linear program to maximize the satisfaction value for a subset of
preference relations.

Challenges for sequential decision making with incomplete preferences. The assumption of com-
pleteness has long been recognized to be restrictive [62]–[64]. When studying decision making for au-
tonomous agents, the incompleteness about preferences may arise mainly due to two reasons [65]: (i) Tentative
incompleteness, which arises from an agent’s inescapability or urgency of making a decision. For example,
an autonomous vehicle must make a decision every 100ms based on whatever knowledge is available at that
time, even if it does not have all the necessary information. (ii)Assertive incompleteness, which arises when the
outcomes are incommensurate in value. That is, the agent lacks a common value function to compare the two

2A deterministic strategy in a deterministic environment results in a unique path.

15

1.2 Contributions of this Dissertation.

outcomes. For example, in the trolley problem [66], an autonomous agent must decide between sacrificing
one person versus sacrificing 5 people.

Incomplete preferences pose a fundamental challenge to rational decision making. For complete prefer-
ences, any planner based on the classical decision theory determines the “best” alternative by first construct-
ing a utility representation of the preference and then using optimization theory to identify the alternative
that yields the highest utility. Nevertheless, the existence of such a utility representation is not assured for
incomplete preferences, except in the special case where the preference relation is continuous [63].

Another unique challenge that arises when investigating sequential decision making with incomplete
preferences is the need to operate with combinative preferences. Combinative preferences allow the agent
to express preferences over alternatives that may not be mutually exclusive. For example, consider a user
preference for a robot that “visiting A is strictly preferred over visiting B.” The two alternatives, ‘visiting
A’ and ‘visiting B,’ are not mutually exclusive because, for instance, a path that visits A may also visit B.
Sequential decision making with combinative preferences remains relatively unexplored within the existing
literature. Given these challenges, we state the second research question considered in this dissertation.

ResearchQuestion II

In a single-player stochastic game on graph, i.e., a Markov decision process, given a set of outcomes
represented as ω-regular objectives, how to synthesize a strategy for P1 to achieve an outcome that
maximally satisfies an incomplete preference over the given set of outcomes.

1.2 Contributions of this Dissertation.

This section provides an overview of the key contributions of this dissertation and outlines its structure. The
material within this dissertation is based upon my previously published papers: Ch. 3 is based on [4], [67],
[68]3, Ch. 4 on [69], Ch. 5 on [70], [71], and Ch. 6 is based on [72].

Ch. 2 surveys the basic definitions of various classes of games, hypergames, objectives, strategies, and
various solution concepts.

Chapters 3-5 are dedicated to addressing Research Question I (RQI) for three sub-classes of games on
graphs with exteroceptive incomplete information. In these games, P1 is presumed to possess complete in-
formation, while P2 might misperceive one of the components of the game. We categorize these games into
three sub-classes based upon the specific game component misperceived by P2 .

1. Misperception of labeling function: P2 lacks information about P1’s labeling function. This means the
same outcome (i.e., an infinite path) could be interpreted differently by P1 and P2.

2. Misperception of action set: P2 has incomplete information about P1’s action capabilities.

3. Misperception of specification: P2 has lacks information about the true objective of P1.

One of the key contributions of this dissertation is the development of hypergames theory for sequential
decision making in games on graphs. We introduce two models: a static hypergame on graph and a dy-
namic hypergame on graph. The static hypergame represents interactions where players’ perceptions remain
constant throughout the interaction, while the dynamic hypergame accommodates evolving perceptions of
players as private information is revealed. Depending on the kind of the misperception involved, we introduce
four solution concepts.

Ch. 3 investigates RQI when P2 is misinformed about P1’s labeling function. In particular, Ch. 3.1 stud-
ies the synthesis problem when the interaction between P1 and P2 is modeled as a deterministic two-player

3The content of Ch. 3.3 is based on the paper [68], which is presently under review.

16

1.2 Contributions of this Dissertation.

turn-based game. The key contributions in this chapter include (i) Modeling: We show how to model the
interaction as hypergame on graph, (ii) Solution concepts: We extend the notion of stealthy deception, com-
monly studied for normal-form and extensive-form games [73], to hypergames on graphs by defining two
solution concepts: stealthy deceptive sure winning and stealthy deceptive almost-sure winning. The strate-
gies synthesized under these concepts guarantee P1 to satisfy its ω-regular objective within finite number of
steps or with probability one, respectively, while ensuring that P2 does not become aware of the information
asymmetry until P1 can ensure to satisfy the temporal logic specification irrespective of P2’s actions. These
solution concepts for hypergames on graphs not only provide the provably-correct deceptive strategies for
P1 but also provide a way to assess the effectiveness of deception and its potential limitations. (iii) Synthesis
algorithm: We show that synthesizing winning strategies in the interaction under these concepts is equivalent
to solving for sure and almost-sure winning strategies in the hypergame on graph. Thus, reducing the prob-
lem of synthesizing winning strategies in a game with incomplete information to that in game with complete
and perfect information. (iv) Comparison between the concepts: We establish that may benefit more from
deception when the game is analyzed under stealthy deceptive almost-sure winning condition as compared
to when it is analyzed under stealthy deceptive sure winning condition.

In Ch. 3.3, we study a joint mechanism design and deceptive strategy synthesis problem. In this problem,
we aim to allocate two types of deception resources, namely, traps and fake targets to disinform P2 about P1’s
true labeling function. In principle, the traps alter the structure of the game but do not affect P2’s perception,
whereas the fake targets manipulate P2’s perception of the goal states in the game. Thus, by deciding the loca-
tion of decoys P1 can influence P2’s perception and, therefore, its behavior. To this end, we first specialize the
hypergame on graph introduced in Ch. 3.2 to model the consequence of P1 allocating a subset of states in the
reachability game as either “traps” or “fake targets” on P2’s perception. Second, we analyze the effect of traps
and fake targets on P2’s behavior when players follow either greedy deterministic strategies, or randomized
strategies. With greedy deterministic strategies, we show that fake targets could be more advantageous than
traps. Whereas, with randomized strategies, we find that neither the fake targets nor the traps provide a greater
benefit over the other. Moreover, we observe that the benefit of using deception is greater when players use
greedy deterministic strategies than when they use randomized strategies. This is a surprising result since,
for several classes of games on graphs, randomized strategies are either equally or more powerful than the
deterministic ones [9], [74]. Finally, we note that the task of determining an optimal placement of decoys that
maximizes the size of the stealthy deceptive sure/almost-sure winning region poses a challenging combinato-
rial problem. To address this challenge and develop an algorithm with practical feasibility, we establish three
key properties: (i) We demonstrate that the placement of traps and fake targets can be treated independently,
as fake targets offer at least the same advantages as traps, (ii) Drawing insights from concepts in composi-
tional synthesis [75], [76], we establish sufficient conditions under which the objective function (i.e., the size
of the stealthy deceptive sure/almost-sure winning region) exhibits submodularity or supermodularity prop-
erty, (iii) Leveraging these findings, we propose a greedy algorithm to incrementally place the decoys. The
algorithm is (1−1/e)-optimal when the objective function is sub- or super-modular. This approach alleviates
the need to exhaustively solve a large number of hypergames for all possible configurations of decoys.

Ch. 4 investigates the class of deterministic two-player turn-based games on graphs where P2 has incom-
plete information about P1’s action capabilities. In this chapter, we introduce a different hypergame model,
called a dynamic hypergame, which allows the perception of players to evolve during the game. Specifically,
when P1 reveals a private action (i.e., an action previously unknown to P2), P2 updates his perception of
P1’s action set and, thereby, his counter-strategy. In this setting, we consider the synthesis of a deceptive
sure-winning strategy, i.e., the strategy using which P1 can enforce satisfaction of its ω-regular reachability
objective in finitely many steps by strategically revealing the private actions, and deceptive almost-sure win-
ning strategy, i.e., the strategy using which P1 can enforce satisfaction of its ω-regular reachability objective
with probability one and, possibly, an undetermined number of steps by strategically revealing the private
actions. Note that P1’s deceptive strategy cannot be stealthy in this case because P2’s perception is allowed to
evolve. We obtain two important results: (i) P1 gains no advantage by using deception under deceptive sure

17

1.2 Contributions of this Dissertation.

winning condition. That is, no state which is losing for P1 in the game with complete, symmetric information
that becomes winning for P1 with the use of deception under sure winning condition. (ii) On the contrary,
we establish that deception could be advantageous for P1 under the deceptive almost-sure condition. That is,
there may exist a state which is losing for P1 in the game with complete, symmetric information that becomes
winning for P1 with the use of deception under this almost-sure winning condition. We present an algorithm
to synthesize the deceptive almost-sure winning strategy for P1 in the interaction.

In Ch. 5, we investigate the class of games on graphs where P2 has incomplete information about P1’s
true objective. We study the problem in two settings. In Ch. 5.1, we consider the problem of synthesizing
stealthy deceptive strategies in deterministic two-player turn-based games on graphs, when P1 leverages P2’s
misinformation to its own advantage but does not influence P2’s perception. We show a reduction from the
problem of synthesizing stealthy deceptive almost-sure winning strategies to that of computing almost-sure
winning strategies in a hypergame MDP representing the second-level hypergame modeling the interaction
between P1 and P2. The reduction relies upon the characterization of the state-space of the hypergame MDP,
which we show to contain up to five regions.

Ch. 5.2 considers the problem of synthesizing (non-stealthy) deceptive strategies for P1 in a stochastic
two-player concurrent game on graph when P2 misperceives P1’s true objective and P2’s perception may
evolve during the interaction. In this setting, we model the interaction as a dynamic hypergame on graph,
where P2 is assumed to maintain a probability distribution over P1’s possible objectives (i.e., a set of LTL
objectives). Our solution consists of two key modules, namely, opponent modeling and deceptive planning.
Under the hypothesis that P2 uses a sub-goal inference mechanism to update its probability distribution, the
opponent modeling enables P1 to track P2’s perception given the history of their interaction. Thus, P1 can
predict how its strategy will influence P2’s perception and strategy. Then, we integrate the opponent model
into deceptive planning to compute a strategy that maximizes the probability of satisfying P1’s true temporal
logic objective.

Finally, Ch. 6 investigates Research Question II by introducing a novel automata-theoretic approach to
qualitative planning in MDPs with incomplete preferences over temporal logic objectives. Our approach con-
sists of three steps. First, we express incomplete preferences over the satisfaction of temporal goals specified
using a fragment of LTL. Unlike propositional preferences that are interpreted over states, preferences over
temporal goals are interpreted over infinite words. Second, we define an automata-theoretic model to capture
the preferences over infinite words induced by the given preference relation over temporal logic formulas.
Thirdly, we present an algorithm to solve preference-satisfying strategies in a stochastic system modeled as
a labeled MDP. We introduce two new concepts, namely, Safe and Positively Improving (SPI) and Safe and
Almost-surely Improving (SASI) strategies, that identify and exploit opportunities with positive probability
and probability one, respectively. To synthesize SPI and SASI strategies, we introduce the idea of improve-
ment MDP that distinguishes between opportunistic and non-opportunistic states. We prove that synthesiz-
ing SPI and SASI in labeled MDP is equivalent to synthesizing positive and almost-sure winning strategies
in improvement MDP. Finally, we show that the synthesized SPI, SASI strategies indeed yield the feasible,
most-preferred outcomes.

18

Chapter 2

Background on Game and HypergameThe-
ory

In this chapter, we discuss the basic definitions of various classes of games, hypergames, objectives, strategies,
and various solution concepts appearing in this thesis.

2.1 Games on Graphs

We start by defining the games on graphs and providing an overview of the established results and algorithms
in this domain. First, we outline some preliminary notation: Given a finite set X , the powerset of X is denoted
as ℘(X). The set of all finite (resp., infinite) ordered sequences of elements from X is denoted by X∗ (resp.,
Xω). The set of all finite ordered sequences of length greater than 0 is denoted by X+. We write D(X) to
denote the set of probability distributions over X . The support of a distribution D ∈ D(X) is denoted by
Supp(D) = {x ∈ X | D(x) > 0}. The indicator function is defined to be 1X(x) = 1 if x ∈ X and 0
otherwise.

We consider several classes of games on graphs, namely, MDP (one-player stochastic games), deterministic
two-player turn-based games on graphs, and stochastic two-player concurrent games on graphs. All these
classes can be represented in a unified manner as defined below.

Definition 2.1 (Game on Graph). A game on graph is a transition system [77], represented by the tuple,

G = ⟨S,Act, T, s0, AP ,L⟩,

where S is the set of states; Act is the set of actions; T is a transition function; s0 ∈ S is an initial state; AP is
a set of atomic propositions; L : S → ℘(AP) is a labeling function that maps every state to the set of atomic
propositions that hold in that state.

Hereafter, we refer to a game on graph as simply a game. The class of the game is determined by the
nature of its transition function and whether players select actions simultaneously or in a turn-based fashion.

In any game, the transition function of a game may be either deterministic or probabilistic. A deterministic
transition function T : S×Act→ S maps a pair of a state and an action to a unique next state. A probabilistic
transition function T : S × Act → D(S) maps a pair of a state and an action to a distribution over possible
next states.

A two-player game is said to be concurrent if, at every state, both players simultaneously decide their next
action without the knowledge of the choice made by the other player. Let Act1 be the set of actions available
to P1 and Act2 be the set of actions available to P2. Then, the set of actions in a concurrent game can be
represented asAct = Act1×Act2 and the transition function may be represented as T : S×Act1×Act2 → S.
On the other hand, a two-player game is said to be turn-based if one player (P1 or P2) decides the next action at

19

2.1 Games on Graphs

every state. In a turn-based game, the set of states can be partitioned into two disjoint sets S1 and S2 such that
S = S1 ∪ S2, where S1 is the set of states where P1 chooses the next action and S2 is the set of states where
P2 chooses the next action. The transition function can be written as T : (S1×Act1)∪ (S2×Act2)→ S. In
turn-based games, each player observes the consequence of the action selected by its opponent in the previous
round. It is noted that MDPs are single-player games whose transition function is probabilistic.

Plays. A play in a game G is an ordered sequence of state-action pairs τ = s0a0s1a1 . . . such that, for every
any integer i ≥ 0, we have si+1 = T (si, ai). A path in a game G is the projection of a trace τ onto the state
space of the game: τ ⇂S= ρ = s0s1 The set of all paths in the game is denoted by Paths(G) and the set
of all finite prefixes of plays is denoted by PrefPaths = {ρ[0 : n] | ρ ∈ Paths(G), n ≥ 0}. Given any path ρ,
the set of all states appearing in ρ is denoted by Occ(ρ) := {s ∈ S | ∃i ≥ 0 : ρ[i] = s}. Similarly, an action-
history is the projection of a trace τ onto the set of actions: τ ⇂Act= α = a0a1 Given the labeling function
L, every run ρ in G can be mapped to a word over an alphabet Σ = ℘(AP) as w = L(ρ) = L(s0)L(s1)

Strategies. A strategy determines the next action to be chosen by a player given a history. In concurrent
games, a P1 strategy is a function π1 : S

+ → D(Act1) that maps every non-empty finite sequence of states in
PrefPaths to a probability distribution over the set of P1’s action set Act1. Whereas, in turn-based games, a
P1 strategy is defined only for non-empty finite sequence of states ending in a P1 state. Thus, it is represented
as a function π1 : S

∗S1 → D(Act1). A P2 strategy in concurrent and turn-based game is defined analogously.
Strategies can either be deterministic or randomized. A P1 or P2 strategy is said to be deterministic if, for

all non-empty finite sequence of states ρ ∈ PrefPaths such that πi(ρ), i = 1, 2, is defined, πi(ρ) is a Dirac
delta distribution. Otherwise, it is said to be randomized. A strategy is said to be memoryless if it only depends
on the last state. Therefore, a memoryless P1 strategy in a concurrent game is a function π1 : S → D(Act1).
Whereas, a memoryless P1 strategy in a turn-based game is a function π1 : S1 → D(Act1). Deterministic,
randomized, memory-based, memoryless strategies of P2 are defined analogously.

Outcomes of strategies. Consider a starting state s0 ∈ S, a P1 strategy π1 and a P2 strategy π2. Then, a
path ρ = s0s1 . . . is said to be (π1, π2)-possible from state s0 if for every i ≥ 0 the following two conditions
hold: if si ∈ S1 then there exists an action a ∈ Act1 such that π1(s0 . . . si)(a) > 0 and T (si, a)(si+1) > 0;
and if si ∈ S2 then there exists an action a ∈ Act2 such that π2(s0 . . . si)(a) > 0 and T (si, a)(si+1) > 0.
The set of all paths that are (π1, π2)-possible from state s0 is denoted by Outcomes(s0, π1, π2).

Winning strategies. In several chapters, we consider P1’s objective to be a reachability objective, and
therefore, an adversarial P2 who wants to prevent P1 from satisfying her reachability objective has a safety
objective. In this case, we use a compact representation of the game.

Definition 2.2 (Reachability Game). A game on graph in which P1 has a reachability objective is a tuple,

G = ⟨S,Act, T, s0, F ⟩,

where S,Act, T, s0 ∈ S have the same meanings as Def. 2.1; F ⊆ S is the set of states that P1 must reach in
order to satisfy its objective.

A reachability objective defines the winning set for P1 as Reach(F) := {ρ ∈ Paths(G) | Occ(ρ)∩F ̸= ∅}.
Similarly, a safety objective of P2, which means that P2 must prevent P1 from visiting a final state in F , defines
the winning set for P2 as Safe(F) := {ρ ∈ Paths(G) | Occ(ρ) ∩ F = ∅}. Given P1’s strategy π1 and P2’s
strategy π2, we say P 1 wins the game if the outcome ρ ∈ Outcomes(s0, π1, π2) satisfies ρ ∈ Reach(F).
Otherwise, P2 wins the game.

Definition 2.3 (Sure Winning Strategy). A P1 strategy π1 is said to be sure winning at a state s ∈ S in a game
with the winning set Win ⊆ Σω for P1 if, for every P2 strategy π2, we have Outcomes(s0, π1, π2) ⊆Win.

20

2.1 Games on Graphs

Definition 2.4 (Almost-sure Winning Strategy). A P1 strategy π1 is said to be almost-sure winning at a
state s ∈ S in a game with the winning set Win ⊆ Σω for P1 if, for every P2 strategy π2, we have
Pr(Outcomes(s0, π1, π2) ∩Win ̸= ∅) = 1.

Definition 2.5 (Postive Winning Strategy). A P1 strategy π1 is said to be positive winning at a state s ∈ S in a
game with the winning set Win for P1 if, for every P2 strategy π2, we have Pr(Outcomes(s0, π1, π2)∩Win ̸=
∅) > 0.

The winning strategies for P2 under the three solution concepts are defined similarly.
The set of states in the game G from which P1 (resp. P2) has a sure winning strategy is called the sure-

winning region for P1 (resp. P2), denoted as SWin1(G,F) (resp. SWin2(G,F)). Analogously, the set of states
in the game G from which P1 (resp. P2) has an almost sure winning strategy is called the almost sure winning
region for P1 (resp. P2), denoted as ASWin1(G,F) (resp. ASWin2(G,F)). Lastly, the set of states in the game
G from which P1 (resp. P2) has a positive winning strategy is called the positive winning region for P1 (resp.
P2), denoted as PWin1(G,F) (resp. PWin2(G,F)). The parameters (G,F) are dropped when they are clear
from context.

A P2 strategy π2 is said to be a permissive under sure winning condition if for any state s ∈ SWin2 and any
action a ∈ Act2 such that π2(s)(a) > 0, we have s′ ∈ SWin2 for any state s′ ∈ S such that T (s, a)(s′) > 0.
That is, by following a permissive strategy P2 is guaranteed to stay within his sure winning region. The
permissive strategies for P1 and P2 under sure winning, almost-sure winning and positive winning conditions
are defined analogously.

In the case of deterministic two-player turn-based games, the following results are known.

Proposition 2.1 (Determinacy). From every state s ∈ S in a deterministic two-player turn-based game, either P1
or P2 has a memoryless sure winning strategy to satisfy their reachability or safety objective, respectively. That is,
for any deterministic two-player turn-based game,G, and a subset of statesF , SWin1(G,F)∪SWin2(G,F) = S
and SWin1(G,F) ∩ SWin2(G,F) = ∅.

Proposition 2.2 (Equivalence of Sure and Almost-sure Winning). In a deterministic two-player turn-based
game, P1’s sure and almost-sure winning regions coincide. That is, for any deterministic two-player turn-based
game, G, and a subset of states F , we have SWin1(G,F) = ASWin1(G,F).

It follows from Proposition 2.1 and Proposition 2.2 that P2’s sure winning and almost sure winning regions
also coincide [17].

Synthesis algorithm for deterministic two-player turn-based game. The sure/almost-sure winning
region of P1 in a reachability G can be computed by using Alg. 2.1.1. The algorithm constructs a sequence of
sets, called level-sets, Z0, Z1, . . . , ZK such that, from any state in Zk \Zk−1, k > 0, P2 has a strategy to visit
Z0 := F in no more than k steps. For any state s ∈ ZK , we define its rank to be the minimum number of steps
in which P2 can ensure a visit to F regardless of P1’s strategy, denoted by rankG(s). Thus, rankG(s) = 0
when s ∈ F , rankG(s) = min{k | s ∈ Zk} when s ∈ ZK \ F , and rankG(s) = ∞ when s /∈ ZK . The
following properties of the level-sets constructed by Alg. 2.1.1 are known [9].

Proposition 2.3. The following statements are true about the level-setsZ0, Z1, . . . , ZK constructed by Alg. 2.1.1.

1. Z0 ⊆ Z1 ⊆ Z2 . . . ⊆ ZK .

2. For any sets F1 ⊆ F2 ⊆ S, we have SWin1(G,F1) ⊆ SWin1(G,F2).

3. For any sets F1, F2 ⊆ S, we have SWin1(G,F1 ∪ F2) = SWin1(G, SWin1(G,F1) ∪ SWin1(G,F2)).

21

2.2 Temporal Logic and Automata

Algorithm 2.1.1: Zielonka’s recursive algorithm to compute sure winning region in a reachability
game.
1 Z0 ← F ;
2 k ← 0;
3 repeat
4 Pre1(Zk)← {v ∈ V1 | ∀a ∈ A1 : ∆(v, a) ∈ Zk};
5 Pre2(Zk)← {v ∈ V2 | ∃a ∈ A2 : ∆(v, a) ∈ Zk};
6 Zk+1 = Zk ∪ Pre1(Zk) ∪ Pre2(Zk);
7 k ← k + 1;
8 until Zk ̸= Zk−1;
9 return Zk;

Given the level-sets constructed by Alg. 2.1.1, a memoryless sure winning strategy of P2 can be constructed
as follows: Given a P2 state s ∈ ZK \ F , let Ds = {a ∈ A2 | s′ = T (s, a) ∧ rankG(s

′) < rankG(s)} be
the set of actions a ∈ A2 for which the next state s′ = T (s, a) has a strictly smaller rank than s. Then, any
deterministic strategy π2 : S → A such that π2(s) ∈ Ds is a memoryless sure winning strategy for P2. Due
to Proposition 2.1, the winning region of P1 is S \ ZK . A deterministic memoryless strategy π1 : S → A1 is
sure winning for P1 at a P1 state s ∈ S1 if π1(s) ∈ {a ∈ A1 | s′ = T (s, a) ∧ s′ ∈ S \ ZK}.

Given the level-sets constructed by Alg. 2.1.1, a memoryless almost-sure winning strategy of P2 can be
constructed as follows [9]: Given a P2 state s ∈ ZK \ F , let Ds = {a ∈ A2 | s′ = T (s, a) ∧ s′ ∈ ZK} be the
set of actions a ∈ A2 for which the next state s′ = T (s, a) is within the set ZK . Then, any strategy π2 ∈ Π2

such that Supp(π2(s)) = Ds is a memoryless almost-sure winning strategy for P2. Similarly, given any P1
state s ∈ S \ ZK , any strategy π1 ∈ Π1 such that Supp(π1(s)) = {a ∈ A1 | s′ = T (s, a) ∧ s′ ∈ S \ ZK} is
almost-sure winning for P2.

2.2 Temporal Logic and Automata

Linear Temporal Logic (LTL). Since we are interested in infinite-duration games, we focus on ω-regular
objectives. Specifically, in some chapters, we use LTL formulas [78] to define the objectives of P1 and P2.
Formally, an LTL formula is defined inductively as

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | ⃝φ | φUφ,

where p ∈ AP is an atomic proposition, ¬ (negation), ∧ (and), and∨ (or) are Boolean operators, and⃝ (next),
U (strong until) and W (weak until) are temporal operators. A formula⃝φ means that the formula φ will
be true in the next state. A formula φ1 Uφ2 means that φ2 will be true in some future time step, and before
that φ1 holds true for every time step. We define two additional temporal operators: ♢ (eventually) and □
(always) as follows: ♢φ = ⊤Uφ and □φ = ¬♢¬φ.

Syntactically co-safe LTL formulas. Sometimes, we restrict the specifications of the players to the class
of scLTL [10]. An scLTL formula contains only ♢ ,⃝ , and U temporal operators when written in a positive
normal form (i.e., the negation operator ¬ appears only in front of atomic propositions). A unique property of
scLTL formulas is that a word satisfying an scLTL formula φ only needs to have a good prefix. That is, given
a good prefix w ∈ Σ∗, the word ww′ |= φ satisfies the scLTL formula φ for any w′ ∈ Σω . The set of good
prefixes can be compactly represented as the language accepted by a deterministic finite automaton (DFA)
defined as follows.

22

2.3 Hypergame Theory

Definition 2.6 (Deterministic Finite Automaton). A deterministic finite automaton (DFA) is a tuple,

A = ⟨Q,Σ, δ, q0, F ⟩,

where Q is the set of states; Σ := ℘(AP) is the alphabet; δ : Q×Σ→ Q is a deterministic transition function;
q0 ∈ Q is the initial state; and F ⊆ Q is the set of final states.

For a finite word w = σ0σ1 . . . σn ∈ Σ∗, the DFA generates a sequence of states q0q1 . . . qn+1 such that
q0 = ι and qi+1 = δ(qi, σi) for any 0 ≤ i ≤ n. The word w is accepted by the DFA if and only if qn+1 ∈ F .
The set of words accepted by the DFA A is called its language. Given P1’s objective expressed as an scLTL
formula φ, the set of good prefixes of words corresponding to φ is accepted by a DFA, which has a special
property that all final states are sink states. Thereby, if a finite prefix of an infinite run reaches a final state,
it is ensured that the “last” state will be a final state and the word, corresponding to this run, is accepted. We
assume that the DFA is complete—that is, for every state-action pair (q, σ), δ(q, σ) is defined. An incomplete
DFA can be made complete by adding a sink state qsink such that ∀σ ∈ Σ, δ(qsink, σ) = qsink, and directing all
undefined transitions to the sink state qsink.

A path ρ in a game G is said to satisfy an LTL formula φ, if the labeling sequence L(ρ) satisfies the
formula φ, i.e., L(ρ) |= φ. Given this relation, a game in which P1 has an scLTL objective can be equivalently
represented by a reachability game constructed in the following way.

Definition 2.7 (Product Game). Given a game on graph G, let φ be an scLTL formula representing P1’s
objective, and A be the DFA representing the language of φ. Then, the product of the game G with the DFA
A, is the a reachability game,

Ĝ = ⟨Ŝ, Act, T̂ , ŝ0, F̂ ⟩,

where Ŝ = S × Q is the set of states; Act is the set of actions; ŝ0 = (s0, L(s0)) is the initial state; and
F̂ = S × F is the set of final states. The transition function is defined as follows: If the transition func-
tion of G is deterministic, then T̂ ((s, q), a) = (s′, q′) if and only if T (s, a) = s′ and δ(q, L(s′)) = q′. If
the transition function of G is probabilistic, then T̂ ((s, q), a)(s′, q′) = T (s, a)(s′) if δ(q, L(s′)) = q′, and
T̂ ((s, q), a)(s′, q′) = 0, otherwise.

2.3 HypergameTheory

A hypergame [27] is a model used to capture strategic interactions when players have incomplete information.
Intuitively, a hypergame is a game of games, and each game is associated with a player’s subjective view of its
interaction with other players based on its own information and information about others’ subjective views.
Hypergames are defined inductively based on the level of perception of individual players. A level-0 (L0)
hypergame is a game with complete, symmetric information, where the perceptual games of both players are
identical to the true game. In a level-1 (L1) hypergame, at least one of the players, say P2, misperceives the true
game, but neither is aware of it. In this case, both players believe their perceptual game to be the true game
and play according to their perceptual games, which are level-0 hypergames. In a level-2 (L2) hypergame,
one of the players becomes aware of the misperception and is able to reason about its opponent’s perceptual
game.

Definition 2.8 (Level-1 and Level-2 Hypergame). Given the true game known to P1 G1 and P2’s perceptual
game G2, the level-1 (L1) hypergame is defined as a tuple H1 := ⟨G1, G2⟩. The level-2 (L2) hypergame
between P1 and P2 is the tuple,

H2 = ⟨H1, G2⟩.

In L2-hypergame, P1 is aware of P2’s misperception, but P2 remains unaware that it lacks information.
Consequently, P2 computes its strategy by solving its perceptual game G2. P1 decides its strategy by solving

23

2.3 Hypergame Theory

the L1-hypergame H1, which allows P1 to incorporate P2’s strategy as computed in G2 into its decision-
making.

We now discuss the solution concepts of hypergames. Given that different players may have different
perceptions (i.e., subjective views) of the utility functions in a hypergame, let uji denote the utility function
of player i perceived by player j.

Definition 2.9 (Subjective Rationalizability [42]). Given a L2 hypergame H2 = ⟨H1, G2⟩, strategy π∗,2
i is

subjective rationalizable for P2 if and only if it satisfies, for all πi ∈ Πi,

u2i (h, π
∗,2
i , π∗,2

j) ≥ u2i (h, πi, π
∗,2
j),

where (i, j) ∈ {(1, 2), (2, 1)}. The strategy π∗,1
1 is subjective rationalizable for P1 if and only if it satisfies, for

all π1 ∈ Π1,
u11(h, π

∗,1
1 , π∗,2

2) ≥ u11(h, π1, π
∗,2
2),

where π∗,2
2 is subjective rationalizable for P2.

In words, a strategy π∗,i
i is called subjective rationalizable for player i if in player i’s subjective view, it is

the best response to player j’s best response π∗,i
j , which is computed from player i’s perceptual game. A pair of

subjective rationalizability (SR) strategies ⟨π∗,1
1 , π∗,2

2 ⟩ is called the best-response equilibrium of the hypergame
H2. In L2 hypergame, P2’s strategy is subjective rationalizable if it is rationalizable in P2’s perceptual game
G2. P1’s strategy is subjective rationalizable if it is the best response to P2’s subjective rationalizable strategy.

24

Chapter 3

SynthesiswithMisperception of Labeling Func-
tion

This chapter investigates the synthesis of deceptive winning strategies for the sub-class of games with in-
complete information where P2 misperceives P1’s labeling function. The labeling function enables a player
to interpret an outcome, i.e., an infinite sequence of game states, to evaluate whether it satisfies its ω-regular
objective. Therefore, when P2 misperceives P1’s labeling function, P2 may not correctly distinguish between
a winning and a losing outcome. For instance, imagine the case where P2 mislabels an unsafe state as a target
state. This provides P1 an opportunity to leverage P2’s misperception and enforce a winning outcome from an
otherwise P1’s losing state, i.e., a state from which P2 has a winning strategy if it had complete information.

The chapter contains two sections. The first section develops the theoretical foundations of analyzing the
aforementioned class of games. It introduces a static hypergame on graph model and the solution concepts of
stealthy deceptive sure winning and stealthy deceptive almost-sure winning to analyze the rational behavior
of players in the hypergame. The second section applies the developed theory to solve the decoy placement
problem (also known as the honeypot allocation problem [79], [80]) in cybersecurity, which asks to place
deception resources in a network to disinform P2 about P1’s labeling function and leverage it to synthesize a
deceptive strategy for P1 to maximize its winning region.

3.1 Effect of Labeling Misperception

Consider an interaction between P1 and P2 characterized by a deterministic two-player turn-based zero-sum
game, G = ⟨S,Act, T, s0, AP ,L⟩, as defined in Def. 2.1. In this interaction, P1’s objective is to satisfy an
scLTL formula φ while P2’s objective is to prevent P1 from satisfying her objective. However, we assume that
P1 and P2 play with different labeling functions. Specifically, the information structure is as follows:

Assumption 3.1 (Information Structure). The components S,Act, T andAP of the gameG, and P1’s objective
φ are known to both players P1 and P2. P1 has complete information about the labeling function, that is, she
knows the true label L(s) of every state s ∈ S. P2 has incomplete information about P1’s labeling function: There
exists at least one state s ∈ S such that L2(s) ⊆ L(s). P1 knows P2’s perceived labeling function L2.

Perceptual games. As a result of Assumption 3.1, P1 and P2 have different perceptions of the game arena.
P1 knows the true game arena G whereas P2 knows the arena with a different labeling function, say G2 =
⟨S,Act, T,AP ,L2⟩. Hence, P1 and P2 play different games in their minds. Since P1 knows her labeling
function, she constructs a perceptual game as the product G ⊗ A, where A is the DFA representing the
language of scLTL formula φ. On the other hand, P2 constructs his perceptual game as the product G2 ⊗A.

Notation 3.1. Given a labeling function L, let G(L) denote the deterministic two-player turn-based game on a
graph in which the labeling function is L.

25

3.2 Static Hypergame on Graph

Abusing the notation, we will write P1’s perceptual game G(L) to represent the product game G ⊗ A.
Similarly, P2’s perceptual game is denoted by G(L2), which represents the product game G2 ⊗A.

As a consequence of misperception, there exist paths ρ = s0s1 . . . in the game arena that are interpreted
differently by P1 and P2. Specifically, P1’s interpretation is L(ρ) = L(s0)L(s1) . . . whereas that of P2 is
L2(ρ) = L2(s0)L2(s1) Because of this the paths induced by ρ in the DFA representing the language of
scLTL formula φ are different. Thus, P1 may mislead or deceive P2 on how much progress has been made
towards satisfying φ by strategically visiting those states s ∈ S where L(s) ̸= L2(s).

A necessary condition for P1 to succeed at deception is to ensure that P2 does not learn about his mis-
perception. Assuming that both players expect their opponent to be rational, P2 would learn about his mis-
perception if P1 acts in a way that P2 considers irrational. A P1’s deceptive strategy that prevents P2 from
beecoming aware of his misperception is called a stealthy deceptive strategy (formalized in Def. 3.2). We now
state our problem statement.

Problem 3.1. Consider an interaction between P1 and P2 under Assumption 3.1 where the true game arena is
G, P2’s perceived game arena is G2, and P1’s objective is to satisfy φ. Then, determine the stealthy deceptive
strategy using which P1 can satisfyφ under the qualitative solution concepts of sure and almost-sure winning.

3.2 Static Hypergame on Graph

Given that P1 and P2 play different perceptual games, their interaction can be modeled as a hypergame.
Following the discussion in Sec. 2.3, the first-level hypergame representing the interaction between P1 and
P2 is given by H1 = ⟨G(L), G(L2)⟩. Since P1 is aware that φ2 is her private information, she is also aware
that P2 misperceives her true objective. Therefore, their interaction is, in fact, a second-level hypergame.

H2 = ⟨H1, G(L2)⟩. (3.1)

We now define a graphical model of the hypergame H2 that incorporates the superior knowledge of P1.
Using this model, we can compute P2’s subjectively rationalizable strategy and use it to synthesize a stealthy
deceptive strategy for P1.

Definition 3.1. Given the perceptual games G(L) and G(L2), a hypergame on a graph is a deterministic
two-player turn-based game on a graph,

H = ⟨V,Act,∆, v0,F⟩,

where

• V := S ×Q×Q is the set of states;

• ∆ : V ×Act→ V is a deterministic transition function such that given two states (s, q, p), (s′, q′, p′) ∈
V and an action a ∈ Act, we have (s′, q′, p′) = ∆((s, q, p), a) if and only if s′ = T (s, a) and q′ =
δ(q, L(s′)) and p′ = δ(p, L2(s

′));

• v0 ∈ V is an initial state.

• F = ASWin(G(L), S × F)×Q is the set of final states.

In a hypergame on a graph, a state v = (s, q, p) ∈ V allows P1 to track the progress q that is truly made
towards satisfying the objective as well as the progress p that P2 thinks has been made towards satisfying
the objective. This is because the component q evolves according to P1’s perceptual game G(L) whereas the
component p evolves according to P2’s perceptual game G(L2). The set of final states is defined, intuitively,

26

3.2 Static Hypergame on Graph

to signify that P1’s objective in H is to visit a winning state in her perceptual game regardless of what P2’s
perception is.

We now formalize the notion of stealthy deceptive strategy that leverages P2’s misperception but ensures
that P2 remains unaware of her misperception.

Definition 3.2 (Stealthy Deceptive Winning Strategy). A memoryless, randomized strategyπ : V → D(Act1)
is said to be stealthy deceptive sure (resp., almost-sure) winning in the hypergameH if the following two con-
ditions hold: (a) Stealthy: For any v ∈ V \ASWin1(G(L), F)×Q, π(v, a) > 0 only if action a is subjectively
rationalizable for P1 in G(L2); (b) Winning: Given any state v ∈ V and any subjectively rationalizable strat-
egy µ of P2, for every run ρ ∈ Outcomes(v, π, µ) we have Occ(ρ)∩F ̸= ∅ (resp., Pr(Occ(ρ)∩F ̸= ∅) = 1).

A state v ∈ H is said to be stealthy deceptive sure (resp., almost-sure) winning if P1 has a stealthy deceptive
sure (resp., almost-sure) winning strategy from that state. The set of all stealthy deceptive sure (resp., almost-
sure) states is called the stealthy deceptive sure (resp., almost-sure) winning region.

3.2.1 Stealthy Deceptive Sure Winning Strategy

In this section, we reduce the problem of synthesizing a stealthy deceptive sure winning strategy to that of
synthesizing a sure winning strategy in a deterministic two-player turn-based game on a graph. Our idea is
to construct a game on a graph that includes only those actions that are subjectively rationalizable from P2’s
perspective. The following result provides a way to characterize the subjectively rationalizable actions.

Lemma 3.1. Given a state v = (s, q, p) ∈ V and an action a ∈ Act, let v′ = (s′, q′, p′) = ∆(v, a). Then, the
action a is subjectively rationalizable at the state v if one of the following conditions hold:

(a) The states (s, p) and (s′, p′) are both P1’s sure winning states in P2’s perceptual game G(L2).

(b) The states (s, p) and (s′, p′) are both P2’s sure winning states in P2’s perceptual game G(L2).

(c) If neither (a) nor (b) holds, then the action a is subjectively rationalizable at the state v.

Intuitively, the conditions (a) and (b) assert that P2 thinks that a rational player, from a winning state, will
select a winning action which allows the player to stay within their winning region. From a losing state, any
action is considered subjectively rationalizable because the player knows that they have lost the game.

Notation. We denote P1 and P2’s subjectively rationalizable strategies in P2’s game by π2
i : V → 2Act, for

i = 1, 2. For a P1 state v = (s, q, p),

π2
1(v) = {a ∈ Act1 | ∆2((s, p), a) ∈ SWin1(G(L2), F)}, (3.2)

where T2 is the transition function of P2’s perceptual game G(L2) and SWin1(G(L2), F) is P1’s sure winning
region in G(L2). P2’s subjectively rationalizable strategy π2

2 is defined analogously.
Next, we define the game on a graph that excludes non-subjectively rationalizable P1 actions.

Definition 3.3. Given the hypergame on a graph H and the subjectively rationalizable strategies π2
1, π

2
2 of

P1 and P2 in P2’s perceptual game G(L2), the game on a graph excluding non-subjectively rationalizable P1
actions is the tuple,

Ĥ = (V,Act, ∆̂, v0,F)

where the transition function ∆̂ is obtained from ∆ by restricting both players’ actions as follows: For any
state v = (s, q, p) ∈ V and any action a ∈ Act,

• If (s, q) ∈ SWin1(G(L), F), then ∆̂(v, a) = ∆(v, a).

27

3.2 Static Hypergame on Graph

• If (s, q) /∈ SWin1(G(L), F) and (s, p) ∈ SWin2(G(L2), F), then ∆̂(v, a) =↑ if s ∈ S2 and π2
2(v)(a) =

0. Otherwise, ∆̂(v, a) = ∆(v, a).

• If (s, q) /∈ SWin1(G(L), F) and (s, p) ∈ SWin1(G(L2), F), then ∆̂(v, a) =↑ if s ∈ S1 and π2
1(v)(a) =

0. Otherwise, ∆̂(v, a) = ∆(v, a).

The set of final states F = {(s, q, p) ∈ V | (s, q) ∈ SWin1(G(L), F) and p ∈ Q}–that is, P1 satisfied her
objective in G(L) by visiting any state in F .

Theorem 3.1. Given a state v ∈ V , P1 has a stealthy deceptive sure winning strategy at the state v in hyper-
gameH if and only if she has a sure winning strategy at the state v in the game Ĥ.

Proof. Before reaching the set SWin1(G(L), F) × Q, at any state (s, q, p) where s ∈ S2, if (s, p) is per-
ceived winning by P2 (i.e., (s, p) ∈ SWin2(G(L2), F)), then P2 will select a subjectively rationalizable ac-
tion a ∈ π2

2(s, p). If (s, p) is not in SWin2(G(L2), F), then any action from P2 is subjective rationzaliz-
able. At a state (s, q, p) where s ∈ S1, if (s, p) ∈ SWin1(G(L2), F) but (s, q) /∈ SWin1(G(L), F), then
P1 will select a subjectively rationalizable action a ∈ π2

1(s, p) so as not to contradict P2’s perception. If
(s, p) /∈ SWin1(G(L2), F) and (s, q) /∈ SWin1(G(L), F), then any action of P1 is deemed subjectively ratio-
nalizable by P2. The solution of reachability game H̃ , is a policy π∗

1 : S ×Q×Q→ A1 that ensures starting
from a state where π∗

1 is defined, no matter which action P2 selects in H̃ , P1 can ensure to reach a state (s, q, p)
with (s, q) ∈ SWin1(G(L), F) by following π∗

1 , in finitely many steps. By construction, P2 will not know that
a misperception exists as P1 takes only subjective rationalizable actions, until P1 reaches SWin1(G(L), F).
After reaching the set, P1 can follow the true winning strategy defined for SWin1(G(L), F).

3.2.2 Stealthy Deceptive Almost-Sure Winning Strategy

P1’s stealthy deceptive sure winning strategy is robust against any deterministic subjectively rationalizable
strategy of P2. When synthesizing stealthy deceptive almost-sure winning strategy, we assume that the play-
ers use randomized strategy. In this case, we are interested to know whether the use of randomized strategy
is more advantageous than using a deterministic strategy. We start by making a reasonable assumption on
P2’s strategy.

Assumption 3.2. For a P2 state v ∈ V in theH, any subjectively rationalizable action at (s, p) in P2’s perceptual
game G(L2) is selected by P2 with a non-zero probability.

Because of Assumption 3.2, P2 can be treated as a random player who chooses an subjectively rationaliz-
able action during every turn. This reduces the hypergameH to a MDP defined below.

Definition 3.4. Given the hypergame on a graphH and the randomized subjectively rationalizable strategies
π2
1, π

2
2 of P1 and P2 in P2’s perceptual game G(L2), the MDP is a tuple,

H̃ = (V1, Act1, ∆̃, v0,F),

where

• V1 = S1 ×Q×Q is the subset of hypergame states at which P1 chooses an action.

• Act1 is the set of P1’s actions.

• v0 ∈ V1 is an initial state.

• ∆̃ : V1 ×Act1 → D(V1) is defined as follows: For any state v = (s, q, p) ∈ V1 and an action a ∈ Act1,
let v′ = (s′, q′, p′) = ∆(v, a),

28

3.3 Decoy Allocation Problem

– If v ∈ ASWin22 then Pr(v′′ | v, a) > 0 for every state v′′ = (s′′, q′′, p′′) ∈ V1 if there exists a P2’s
subjectively rationalizable action b ∈ Act2 such that π2

2((s
′, p′))(b) > 0 and v′′ = ∆(v′, b).

– If v ∈ ASWin21 thenPr(v′′ | v, a) > 0 for every state v′′ = (s′′, q′′, p′′) ∈ hgameState1 if action a
is subjectively rationalizable at the state (s, p) in P2’s perceptual game G(L2), i.e., π2

1((s, p))(a) >
0, and there exists a P2’s subjectively rationalizable action b ∈ Act2 such that π2

2((s
′, p′))(b) > 0

and v′′ = ∆(v′, b).

The set of final states F = {(s, q, p) ∈ V | (s, q) ∈ ASWin11 and p ∈ Q}–that is, P1 satisfied her objective in
G(L) by visiting any state in F .

Theorem 3.2. Given a state v ∈ V1, P1 has a stealthy deceptive almost-sure winning strategy at the state v in
hypergameH if and only if she has a almost-sure winning strategy at the state v in the game H̃.

The proof is similar to that of Thm. 3.2.

3.3 Decoy Allocation Problem

In this section, we consider a joint deception resource allocation and deceptive strategy synthesis problem for
a class of games on graphs with incomplete information. We consider a subclass of games on graphs called
reachability games that represent a sequential interaction between two players, namely, a defender (P1) and
an attacker (P2). The attacker’s objective is to reach a set of target states, while that of the defender is to
prevent the attacker from reaching a target state. Employing the solutions of zero-sum reachability games
[9], we can identify a set of states from which P1 has no strategy to prevent P2 from visiting a true target.
To protect targets when the game starts from a P1’s losing position, P1 can allocate deception resources to
disinform the attacker and further synthesize a deceptive strategy that exploits the attacker’s misinformation
to prevent it from reaching the target states. We consider two classes of deception resources that serve the
functions of hiding the real and reveal the fiction [81]. Hiding the real refers to the defender simulating a
trap to function like a real state while revealing the fiction corresponds to camouflaging a state to look like
a target state for the attacker. Given this setup, we are interested in the following problem: How to optimally
allocate the decoys so that the defender can influence the attacker into taking (or not taking) certain actions that
maximize the defender’s deceptive winning region?

3.3.1 Modeling and Problem Formulation

We consider the class of interactions between P1 and P2 characterized by the following information structure.

Assumption 3.3 (Information Structure). P1 knows the true game, i.e., the locations and types of all decoys. P2
is unaware of the presence of decoys. P1 knows about P2’s unawareness.

In a game with incomplete information satisfying Assumption 3.3, the players perceive their interaction
differently. P1 has complete information about the location and type of the decoys and, therefore, knows the
true game.

Definition 3.5 (True Game). Given a base game G = ⟨S,A, T, s0, F ⟩, let X and Y be two subsets of S \ F
such thatX∩Y = ∅. The deterministic two-player turn-based game representing the true interaction between
P1 and P2 when the states in X are allocated as traps and those in Y are allocated as fake targets is the tuple,

G1
X,Y = ⟨S,A, TX,Y , s0, F ⟩,

where

• S, A, s0 and F are defined as in Def. 2.2;

29

3.3 Decoy Allocation Problem

s0

s1

s2

s3

s4

s5

s6

s7s8s9

s10

s11

k = 0k = 1k = 2k = 3k = 4k = 5k = +∞

⊤

⊤

b2b1

a1

a2

a2

b2b1

b1

b2

a1

a2
b1

b2

a2

a1

a1

a2

b2

Figure 3.1: Base game considered in the running example.

• TX,Y is a deterministic transition function. Given any state s ∈ S and any action a ∈ A,

TX,Y (s, a) =

{
T (s, a) if s /∈ X ∪ Y

s otherwise

Note that the states in G which are allocated as decoys are ‘sink’ states in G1
X,Y . Hereafter, we reserve

the symbols X,Y to represent traps and fake targets.
On the other hand, P2 is unaware of the presence of decoys. Therefore, in its subjective view of the game,

P2 does not mark the states in X ∪ Y as sink states; instead, it considers the states in Y to be goal states.
Definition 3.6 (P2’s Perceptual Game). Given a base game G = ⟨S,A, T, s0, F ⟩, a set X of traps and a set
Y of fake targets, P2’s perceptual game is the tuple

G2
X,Y = ⟨S,A, T, s0, F ∪ Y ⟩,

where
• S, A, T , s0 have the same meanings as Def. 2.2;

• F ∪ Y is a set of goal states as perceived by P2.
Remark 3.1. When P1 places no fake targets, i.e., Y = ∅, we have G2

X,Y = G.
Given the information structure in Assumption 3.3, we consider the following problem:

Problem 3.2. Let G = ⟨S,A, T, s0, F ⟩ be a reachability game. Determine the subsets X,Y ⊆ S \ F of
traps and fake targets that maximize the number of states from which P1 has (i) a sure winning strategy,
(ii) an almost-sure winning strategy, to prevent P2 from reaching F , taking into account P2’s incomplete
information and subject to the constraints that |X| ≤M , |Y | ≤ N and X ∩ Y = ∅.

We introduce a running example to illustrate the key insights derived in this paper.
Example 3.1 (Running Example). Consider the game depicted in Fig. (3.1). The game consists of 12 states,
where circular states represent P1 states and square states represent P2 states. The final states s0 and s1 are
indicated by a double boundary. In this game, P2 aims to reach either state s0 or s1.

To determine the winning regions of the players, Alg. 2.1.1 is applied to G with the set of final states
F = {s0, s1}. The colors assigned to the states in the figure correspond to the result of this algorithm. Blue-
colored states represent the sure/almost-sure winning region of P1, while red-colored states represent the
corresponding region of P2. Additionally, the rank of each state is indicated by its column placement. A state
belonging to a column with rank k = n possesses a rank equal to n. For instance, the states s5, s6 have a rank
of 2, while the state s9 has a rank of 5. The states s10, s11 that constitute P1’s sure winning region have rank
+∞.

30

3.3 Decoy Allocation Problem

3.3.2 P2’s Subjectively Rationalizable Strategy

In this subsection, we discuss the effect of decoys on P2’s winning region and the subjectively rationalizable
strategies in its perceptual game.

As discussed in Rmk. 3.1, traps do not impact P2’s perception. Consequently, traps do not influence the
winning regions of the players in P2’s perceptual game, nor do they affect P2’s subjectively rationalizable
strategy. Therefore, in this subsection, we focus on the case when Y is a non-empty subset of S \ F and P2’s
objective in G2

X,Y is to reach F ∪ Y .
We first introduce a lemma that captures the effect of making a subset of states in SWin2(G,F) \ F to

be P2’s goal states. The lemma will aid us in proving Proposition 3.1, which summarizes the effect of decoys
on the size of winning regions of P1 and P2 as perceived by P2. The lemma is general and holds for any
reachability game.

Lemma 3.2. Let G = ⟨S,A, T, s0, F ⟩ be a game as per Def. 2.2. Given any Y ⊆ SWin2(G,F) \ F , let
G2

∅,Y = ⟨S,A, T∅,Y , s0, F ∪ Y ⟩ be a game in which a subset of P2’s winning region is marked as final states in
addition to F . Then, the rank of any state s ∈ SWin2(G,F) in G2

∅,Y is less than or equal to its rank in G.

Proof. Recall that the rank rankG(s) of a state s ∈ SWin2(G,F) in game G is the smallest number of steps
in which P2 can ensure a visit to F , regardless of the deterministic strategy followed by P1. By definition, in
game G, every path in OutcomesG(s, π1, π2) from any state s ∈ SWin2(G,F) is ensured to visit F for any
valid P1 strategy π1 and any sure winning strategy π2 of P2. Since, in game G2

∅,Y , the presence of fake targets
does not affect the transitions from any state except those in Y and all states in F ∪ Y are sink states, two
possibilities arise for any path ρ ∈ OutcomesG2

∅,Y
(s, π1, π2): either ρ visits Y before visiting F , or ρ visits F

without visiting Y . In both cases, the number of steps required to visit F ∪ Y is at most rankG(s). The rank
of s in G2

∅,Y is strictly smaller than rankG(s) when P2 has a sure winning strategy from s to visit Y .

Since the presence of traps does not affect P2’s perception, it does not affect the ranks of the states. Hence,
Lma. 3.2 extends naturally to games containing both types of decoys.

Corollary 3.3. For any state s ∈ SWin2(G,F), its rank in G2
X,Y is less than or equal to its rank in G.

We now introduce a proposition to summarize the effect of decoys on the size of winning regions of P1
and P2 as perceived by P2.

Proposition 3.1. The following statements about G2
X,Y are true.

(a) IfY ⊆ SWin1(G,F), then SWin1(G
2
X,Y , F∪Y) ⊆ SWin1(G,F) and SWin2(G

2
X,Y , F∪Y) ⊇ SWin2(G,F).

(b) If Y ⊆ SWin2(G,F) \ F , then SWin1(G
2
X,Y , F ∪ Y) = SWin1(G,F) and SWin2(G

2
X,Y , F ∪ Y) =

SWin2(G,F).

Proof. (a). Consider the statement SWin2(G
2
X,Y , F ∪ Y) ⊇ SWin2(G,F). Let s ∈ SWin2(G,F). By Corol-

lary 3.3, the rank of s in G2
X,Y is smaller than its rank in G. Since any state with a finite rank in G2

X,Y is a
winning state for P2, s ∈ SWin2(G

2
X,Y , F ∪Y). The statement SWin1(G

2
X,Y , F ∪Y) ⊆ SWin1(G,F) follows

from SWin2(G
2
X,Y , F ∪ Y) ⊇ SWin2(G,F) using Proposition 2.1.

(b) Consider the statement SWin2(G
2
X,Y , F ∪ Y) = SWin2(G,F).

(⊇). Given any state s ∈ SWin2(G,F), by Corollary 3.3, its rank in G2
X,Y is finite. Thus, we have

SWin2(G
2
X,Y , F ∪ Y) ⊇ SWin2(G,F).

(⊆). By way of contradiction, suppose there exists a state s ∈ SWin2(G
2
X,Y , F ∪ Y) such that s /∈

SWin2(G,F). This means that P2 has a greedy deterministic strategy, say π2, to enforce a visit to F ∪ Y in
G2

X,Y . But following π2 in G does not induce a visit to F . Now, if π2 induces a visit to F in G2
X,Y , then it

31

3.3 Decoy Allocation Problem

must also be a sure winning strategy for P2 in G, as the presence of fake targets only affects the outgoing
transitions from Y . Therefore, it must be the case that the following π2 induces a visit to Y in G2

X,Y . Since
Y ⊆ SWin2(G,F), in game G, P2 has a greedy deterministic strategy to enforce a visit to F from any state
in Y . Thus, by following π2 until visiting Y and then following any greedy sure winning strategy in game G
to visit F from Y , P2 can enforce a visit to F from state s—a contradiction.

The statement SWin1(G
2
X,Y , F ∪Y) = SWin1(G,F) follows from SWin2(G

2
X,Y , F ∪Y) = SWin2(G,F)

using Proposition 2.1.

Intuitively, Proposition 3.1(a) states that when fake targets are placed within P1’s sure winning region
in G, P2 misperceives some states that are truly winning for P1 to be winning for itself. This is because P2
misperceives fake targets Y as goal states.

Proposition 3.1(b) is particularly noteworthy, as it reveals that placing fake targets within P2’s sure/almost-
sure winning region in game G has no impact on the sure/almost-sure winning regions of the players in P2’s
perceptual game. This observation is intuitively supported by Corollary 3.3, which states that the rank of a
state in SWin2(G,F) \ F cannot increase when a subset of states from this set are assigned as fake targets.
Additionally, there cannot exist a state outside SWin2(G,F) from which P2 can enforce a visit to F ∪ Y in
G2

X,Y . Because, if such a state existed, then it should have been included in SWin2(G,F) since from all states
in Y in game G, P2 has a strategy to enforce a visit to F .

However, the inclusion of fake targets in SWin2(G,F) results in modifying the set of strategies that are
subjectively rationalizable for P2 when players use greedy sure winning strategies. This is due to the alteration
of state ranks, which influence the set of subjectively rationalizable actions under the sure winning condition
available at each state. The following example illustrates this phenomenon.

Example 3.2. Fig. (3.2) shows the perceptual games of P1 and P2 when a fake target is placed at the state
s7. Fig. (3.2)(a) shows P1’s perceptual game, in which s7 is marked as a sink state (see honeypot symbol).
The sure winning region of P1 in this game contains the states {s7, s8, s9, s10, s11} (shown in blue), and that
of P2 contains {s0, s1, s2, s3, s4, s5, s6} (shown in red). Fig. (3.2)(b) shows P2’s perceptual game, where P2
misperceives s7 as a target. Consequently, the sure winning region of P1 is {s10, s11} (shown in blue) and
that of P2 contains the states {s0, . . . , s9} (shown in red).

Observe how the fake target s7 affects the ranks of the states s0, . . . , s9. When players use greedy sure
winning strategies, s7’s rank changes from 3 in the base game (see Fig. (3.1)) to 0 in P2’s perceptual game.
Similarly, the states s5 and s8, from which P2 has a strategy to visit s7 in one step, attain rank 1 in P2’s
perceptual game.

The changes to the ranks of the states affect P2’s subjectively rationalizable strategy in its perceptual
game. For instance, consider the action b2 at state s5. In the base game, b2 is subjectively rationalizable for P2
because it is rank-reducing. However, in P2’s perceptual game, the action b2 is not rank-reducing. Therefore,
it is not subjectively rationalizable. In fact, the action b1, which was not rationalizable in the base game,
becomes subjectively rationalizable for P2 in its perceptual game.

3.3.3 Stealthy Deceptive Sure Winning Strategy

In this subsection, we introduce a new hypergame on graph model to synthesize a stealthy deceptive sure
winning strategy for P1. Two key observations facilitate our definition of the hypergame on graph:

(i) When the game starts at a P1’s sure/almost-sure winning state in G1
X,Y , P1 can prevent the game from

reaching F without the use of decoys.

(ii) When the game starts from a P2’s sure/almost-sure winning state inG1
X,Y , the only way for P1 to prevent

the game from visiting F is by forcing a visit to a decoy state.

As a result, P1’s safety objective to prevent a visit to F reduces to a reachability objective to visit X ∪ Y .

32

3.3 Decoy Allocation Problem

s0 s1

s2 s3 s4

s5 s6

s7

s8

s9

s10 s11

⊤ ⊤

b2

b1

a1 a2 a2

b2

b1

b1 b2

a1

a2

b1

b2
a2

a1

a1

a2
b2

(a) P1’s perceptual game.

s7

s0

s1

s8

s2

s5

s3

s4

s9 s6

s10

s11

k = 0k = 1k = 2k = 3k = +∞

⊤

⊤

b2

b1

a1

a2

a2

b2

b1
b1

b2

⊤

b1

b2

a2

a1

a1a2

b2

(b) P2’s perceptual game.

Figure 3.2: Perceptual games when the state s7 is a fake target. In both sub-figures, the blue-colored states
are winning for P1, and the red-colored states are winning for P2. Dotted transitions depict actions that are
not subjectively rationalizable for P2 when players use greedy deterministic strategies.

Lemma 3.3. Any P1 strategy π1 at a state s ∈ SWin2(G,F) that prevents a visit to F in the true game G1
X,Y

must ensure a visit to a state in X ∪ Y .

Proof. We will focus on the case where players utilize randomized strategies, given that deterministic strate-
gies are a special case of randomized strategies.

By way of contradiction, suppose that there exists a strategy π1 for P1 to prevent the game G1
X,Y from

reaching F starting from state s while ensuring that no state in X ∪ Y is visited. In other words, the game
remains indefinitely within the set SWin2(G,F) \ (F ∪ X ∪ Y). However, by definition, for every state
s ∈ SWin2(G,F), P2 possesses a strategy π2 that guarantees a visit to F from s in the original game G,
regardless of P1’s strategy. Therefore, if P1 follows π1 and P2 follows π2 in the game G1

X,Y , the resulting path
must indefinitely remain within the set SWin2(G,F) \ (F ∪X ∪ Y) while also visiting F—a contradiction.
Consequently, the only way for P1 to prevent the game from reaching F is by visiting the set X ∪ Y , which
contains sink states.

Following Observation (i) and Lma. 3.3, we define our hypergame on graph model as a reachability game,
in which the players only follow strategies that are subjectively rationalizable for P2 and P1’s objective is to
reach a decoy state. When players use greedy sure winning strategies, the set of subjectively rationalizable
actions at a P2 state in SWin2(G,F) \ F is given by

SRAct(s) = {a ∈ A2 | s′ = T (s, a) ∧ rankG2
X,Y

(s′) < rankG2
X,Y

(s)}. (3.3)

Definition 3.7 (Hypergame on Graph). Given the game G, the sets of decoys X,Y ⊆ SWin2(G,F), and a
function SRAct that maps every state in G to a set of subjectively rationalizable actions for P2, the hypergame
on graph representing the L1-hypergame H1 is the tuple,

Ĥ1(X,Y) = ⟨SWin2(G,F), A, T̂X,Y , X ∪ Y ⟩,

where

• SWin2(G,F) is set of states.

33

3.3 Decoy Allocation Problem

s0

s1

s2

s3

s4

s5

s6

s7s8s9

⊤

⊤

b2b1

a1

a2

a2

b2b1

b1

b2

a1
b1

b2

a2

a1

Figure 3.3: Hypergame on graph constructed based on P1 and P2’s perceptual games shown in Fig. (3.2).
Dotted lines depict P2’s subjectively rationalizable actions. The cyan-colored states are stealthy deceptive
sure winning states for P1, whereas the red-colored states are sure winning for P2.

• T̂X,Y : S × A → S is a deterministic transition function such that, for any state s ∈ SWin2(G,F),
T̂X,Y (s, a) = T (s, a) if and only if a ∈ SRAct(s). Otherwise, T̂X(s, a) is undefined.

• X ∪ Y ⊆ SWin2(G,F) \ F is the set of states representing P1’s reachability objective.

It is noted that the set X ∪ Y in Ĥ1(X,Y) defines P1’s reachability objective, not P2’s objective.

Theorem 3.4. Every sure winning strategy of P1 in Ĥ(X,Y) is a stealthy deceptive sure winning strategy for
P1 in the L2-hypergame, H2(X,Y).

Proof. Every action available to P1 and P2 in Ĥ(X,Y) is greedy and subjectively rationalizable for P2 by con-
struction. Therefore, every sure winning strategy of P1 in Ĥ(X,Y) is greedy and subjectively rationalizable
for P2. By Lma. 3.3, the strategy is stealthy deceptive sure winning for P1 in H2(X,Y).

Example 3.3. In Fig. (3.3), we present the hypergame on a graph that captures the interaction between P1
and P2 as described in Example (3.1). The hypergame includes states s0 . . . s9, representing P2’s sure winning
region in the base game. Dotted transitions represent P2’s actions that are not subjectively rationalizable for
P2 in its perceptual game and are excluded from the hypergame on graph. The result of applying Alg. 2.1.1
to the hypergame on graph is shown by coloring the states of the hypergame on graph. Cyan-colored states
indicate that P1 has a sure winning strategy to reach s7 from those states, representing P1’s stealthy deceptive
sure winning region. Red-colored states indicate P2’s sure winning region, from which P1 has no deceptive
strategy to prevent a visit to s0 or s1.

For example, P1’s sure winning strategy at s9 is to select action a1, which leads to the P2 state s8. From
there, the only subjectively rationalizable action for P2 is b1, which leads the game to visit the fake target.
It is important to note that action a2 at state s9 is stealthy since it is subjectively rationalizable for P2 but
not deceptive sure winning for P1, as it would lead to state s6 from which P1 does not possess a strategy to
prevent the game from reaching either s0 or s1.

Now, consider states s2 and s5. State s5 is a stealthy deceptively sure winning state for P1 because the
only greedy strategy available to P2 at s5 selects action b1, which leads to the fake target s7. Note that a
strategy that selects b2 at s5 is not greedy because s5 and s2 have ranks equal to 1. Similarly, state s2 is not
stealthy deceptively sure winning state for P1 because the only greedy strategy at s2 is to select action b2 that
leads to a true final state s0, which P1 aims to prevent.

3.3.4 Stealthy Deceptive Almost-Sure Winning Strategy

In this section, we examine Problem 3.2 under the almost-sure winning criterion when players employ ran-
domized strategies. Unlike the result from Sec. 3.3.5, we find that there is no clear advantage of either fakes or
traps over the other. This difference stems from the fact that, when using randomized strategies, the players

34

3.3 Decoy Allocation Problem

are not required to use rank-reducing strategies. The set of actions subjectively rationalizable for P2 in this
case is given by

ŜRAct(s) = {a ∈ A2 | T (s, a) ∈ SWin2(G,F)}, (3.4)

for any state s ∈ S2 ∩ SWin2(G,F) \F . By definition, all available actions are subjectively rationalizable for
P2 at every other state.

Intuitively, starting from a P2’s almost-sure winning state in G2
X,Y , every P2 action that ensures that the

game remains within the same region is subjectively rationalizable for P2. This is because (a) from every state
in this region, P2 can enforce a visit to F ∪Y with a positive probability, and (b) P1 has no strategy to exit this
region. Therefore, a randomized strategy that selects every subjectively rationalizable action at a state with a
positive probability is guaranteed to enforce a visit to F ∪ Y with probability one [67]. Such a randomized is
an almost-sure winning strategy for P2 in game G [77, Chapter 10].

Lemma 3.4. Let s ∈ SWin2(G,F) \ (F ∪ Y) be a state in P2’s perceptual gameG2
X,Y with the decoysX,Y ⊆

SWin2(G,F) \ F . Then, the set of subjectively rationalizable actions at s in game G is equal to that in game
G2

X,Y .

Proof. The lemma follows from two observations. First, by Proposition 3.1, since Y ⊆ SWin2(G,F), we have
SWin2(G,F) = SWin2(G

2
X,Y , F ∪ Y). That is, P2’s winning region in G and G2

X,Y are equal. Second, by
Def. 3.6, the transitions from any state s /∈ Y are identical in the two games, G and G2

X,Y . The statement
follows by the definition of ŜRAct.

Based on Lma. 3.4 and the knowledge that P2 follows a randomized almost-sure winning strategy in
G2

X,Y , P1 can construct a MDP to represent the L1-hypergame H1 by marginalizing the true game G1
X,Y with

P2’s randomized almost-sure winning strategy. Since P1 does not know P2’s choice of its strategy, P1 would
assume, in the worst case, that P2’s randomized strategy may choose any subjectively rationalizable action at
a given state with positive probability. This results in the following hypergame MDP (adapted from [67]).

Definition 3.8 (Hypergame MDP). Given the true game G1
X,Y and the function ŜRAct that maps every

state s ∈ SWin2(G,F) to the set of subjectively rationalizable actions for P2 at s, the hypergame MDP that
represents L1-hypergame H1(X,Y) is the following tuple,

H̃1(X,Y) = ⟨S̃, A, T̃X,Y , X ∪ Y ⟩,

where

• S̃ = SWin2(G,F) is P2’s sure winning region in G. At P1 states in S̃1 = SWin2(G,F)∩S1, P1 chooses
the next action strategically. Whereas, the states in S̃2 = SWin2(G,F) ∩ S2 are nature states. At a
nature state, the next state is chosen at random according to a predefined probability distribution.

• T̂X,Y : S̃ × A→ D(S̃) is a transition function defined as follows: any state s ∈ X ∪ Y is a sink state.
At a state s ∈ S̃1, we have T̂X,Y (s, a, s

′) = 1 if and only if s′ = T (s, a). At a state s ∈ S̃2, we have
T̂X,Y (s, a, s

′) > 0 if and only if a ∈ ŜRAct(s) and s′ = T (s, a). Otherwise, T̂X,Y (s, a, s
′) = 0.

• X ∪ Y is the set of states representing P1’s reachability objective.

It follows by construction that an almost-sure winning strategy of P1 in the hypergame MDP to visit
X ∪ Y is a stealthy deceptive almost-sure winning strategy.

Theorem 3.5. P1 can guarantee a visit toX ∪ Y from a state s ∈ SWin2(G,F) in the true game G1
X,Y if and

only if P1 has an almost-sure winning strategy to visit X ∪ Y from the state s in H̃1(X,Y).

35

3.3 Decoy Allocation Problem

With this, we can prove the key result of this section: When players use randomized strategies and the
games are analyzed under almost-sure winning condition, fake targets are equally valuable as traps.

Theorem 3.6. For any Z ⊆ SWin2(G,F) \ F , we have DASWin1(Z, ∅) = DASWin1(∅, Z).

Proof. By Lma. 3.4, the hypergame MDPs H1(Z, ∅) and H1(∅, Z) are identical. Therefore, P1’s almost-sure
winning regions in the two hypergames are equal.

Since the fake targets and traps are equally valuable, Alg. 3.3.1 can be used to place the decoys in this
setting by replacing DSWin1(X,Y) with DASWin1(X,Y) on line 6 and 12 of Alg. 3.3.1. However, in this
case, the complexity of the algorithm is O((V + E)2(M + N)2) since the algorithm for computing the
almost-sure winning region in the hypergame MDP has a time complexity of O((V + E)2) [77].

We conclude this section by establishing that P1 may benefit more from deception when playing against
P2 using an almost-sure winning strategy than when playing against P2 using a sure-winning strategy in P2’s
perceptual game.

Theorem 3.7. For any X,Y ⊆ SWin2(G,F) \ F , we have DASWin1(X,Y) ⊆ DSWin1(X,Y).

Proof. We will establish that, for any state s ∈ DASWin1(X,Y), it also belongs to DSWin1(X,Y). To achieve
this, we construct a stealthy deceptive sure-winning strategy πd

1 for P1, given any stealthy deceptive almost-
sure winning strategy πr

1.
Let πd

1 be a deterministic strategy such that πd
1(s) = a, for some a ∈ Supp(πr

1(s)).
We will show that πd

1 is a stealthy deceptive sure winning strategy for P1. Recall that every stealthy
deceptive sure winning strategy is a greedy, deterministic strategy subjectively rationalizable for P2 that
ensures a visit to X ∪ Y in finitely many steps, regardless of the greedy, deterministic strategy followed by
P2.

(πd
1 is subjectively rationalizable for P2). πd

1 is subjectively rationalizable for P2 whenever πd
1(s) ∈

SRAct(s). This is indeed the case because the following three conditions hold for all P1 state s ∈ DASWin1(X,Y)

by definition: (i) πd
1(s) ∈ Supp(πr

1(s)), (ii) Supp(πr
1(s)) ⊆ ̂SRAct(s), and (iii) ̂SRAct(s) = SRAct(s).

(πd
1 is greedy). The strategy πd

1 is greedy because every action enabled at a P1 state s ∈ DASWin1(X,Y)
is rank-reducing. This is because every state s ∈ DASWin1(X,Y) is also a member of SWin2(G,F) and
Alg. 2.1.1 includes a P1 state s in SWin2(G,F), if and only if all actions from s are rank-reducing.

(πd
1 induces a visit to X ∪ Y). We establish that, given any greedy, deterministic P2 strategy πd

2 , every
path ρ ∈ Outcomes

Ĥ1(X,Y)
(s, πd

1 , π
d
2) visits X ∪ Y within a finite number of steps. First, we note that

Outcomes
Ĥ1(X,Y)

(s, πd
1 , π

d
2) ⊆ Outcomes

Ĥ1(X,Y)
(s, πr

1, π
r
2) holds for any randomized strategy πr

2 of P2. This
is true because of two facts: (i) πd

1(s) ∈ Supp(πr
1(s)), by definition, and (ii) πd

2(s) ∈ Supp(πr
2(s)), which is true

because ̂SRAct(s) ⊆ SRAct(s) holds for all P2 states. Second, we note that, since πr
1 is a stealthy deceptive

almost-sure winning strategy, every path in Outcomes
Ĥ1(X,Y)

(s, πr
1, π

r
2) eventually visits X ∪ Y . Clearly,

it cannot visit F because all states in F are sink states. Therefore, no path in Outcomes
Ĥ1(X,Y)

(s, πd
1 , π

d
2)

visits F . Since both the strategies πd
1 and πd

2 are greedy, it follows by Lma. 3.3 that ρ must visit X ∪Y within
finitely many steps.

Fig. (3.4) illustrates a toy example where the subset relation is strict, i.e.,DASWin1(X,Y)⊊ DSWin1(X,Y).
In this example, F = {s0} is a singleton final state that P2 aims to reach, X = {s1} is the set of traps, and Y =
{s2} is the set of fake targets. This results in DSWin1({s1}, {s2}) = {s1, s2, s4} and DASWin1({s1}, {s2}) =
{s1, s2}. Notice that s4 is stealthy deceptively sure winning for P1, but not stealthy deceptively almost-sure
winning. This is because, when players use greedy deterministic strategies, b is the only action at s4 which
is subjectively rationalizable for P2. Since T (s4, b) = s2 and s2 is a fake target, the game is guaranteed to
visit X ∪ Y . However, when players used randomized strategies, both the actions b and c are subjectively
rationalizable for P2 at s4. Thus, the game may reach s5 with a positive probability, from where P1 has no
strategy to prevent the game from reaching F .

36

3.3 Decoy Allocation Problem

s0

s1 s2 s3

s4 s5 s6

a a a

a b

c a

a

Figure 3.4: A scenario where DASWin1(X,Y) ⊊ DASWin1(X,Y).

3.3.5 Compositional Synthesis for Decoy Placement

Given a placement of traps and fake targets, Thm. 3.4 provides a way to compute P1’s deceptive sure winning
region given a fixed decoy allocation X,Y . Next, we formulate a combinatorial optimization problem in
which P1 aims to maximize the size of its stealthy deceptive sure winning region by allocating traps and fake
targets.

X∗, Y ∗ = argmax
X,Y⊆SWin2(G,F)\F

|DSWin1(X,Y)|

subject to: |X| ≤M, |Y | ≤ N,X ∩ Y = ∅.
(3.5)

In Eq. (3.5), every distinct choice of X,Y defines a hypergame, Ĥ1(X,Y), which must be solved to de-
termine the size of DSWin1(X,Y). A naı̈ve approach to solving Eq. (3.5) is to compute DSWin1(X,Y) for
each valid placement of X,Y and then select a set X ∪ Y for which |DSWin1(X,Y)| is the largest. How-
ever, this approach is not scalable because number of hypergames to solve is

(|SWin2(G,F)\F |
M+N

)(
M+N
M

)
, which

grows rapidly with the size of game and number of decoys to place. To address this issue, we introduce a
compositional approach to decoy placement in which we show that, when certain conditions hold, the de-
coy allocation problem can be formulated as a constrained supermodular maximization problem, for which a
(1− 1

e)-approximation can be computed in polynomial time using a greedy algorithm [82].
The key insight behind our algorithm is that fake targets could be more advantageous than traps. This

enables us to decouple the placement of traps and fake targets.

Theorem 3.8. For any subset Z ⊆ SWin2(G,F) \ F , we have DSWin1(Z, ∅) ⊆ DSWin1(∅, Z).

Proof. Recall that the stealthy deceptive sure winning region in the true game is determined by computing P1’s
sure winning region to reach the decoys in the hypergame. Therefore, the winning regions DSWin1(Z, ∅) and
DSWin1(∅, Z) have an attractor structure. Given any X,Y ⊆ SWin2(G,F) \ F , let DSWini1(X,Y) denote
the i-th level of attractor of the sure winning region DSWin1(X,Y) in hypergame Ĥ1(X,Y).

We will prove by induction that, for any n ≥ 0,

DSWinn1 (Z, ∅) ⊆ DSWinn1 (∅, Z). (3.6)

(Base Case). The statement is true for n = 0 because DSWin01(Z, ∅) = DSWin01(∅, Z) = Z .
(Induction Step). Let k ≥ 0 be an integer. Suppose that Eq. (3.6) holds for n = k. To show that every

state s ∈ DSWink+1
1 (Z, ∅) is an element of DSWink+1

1 (∅, Z), we consider two cases.
First, when s is a P1 state, P1 has an action in game G2

Z,∅ at state s to visit DSWink1(Z, ∅) in one step. Since
all P1 actions at a state in SWin2(G,F) are subjectively rationalizable for P2, due to the induction hypothesis,
using the same action at s would lead the game G2

∅,Z to visit DSWink1(∅, Z) in one step. Hence, every P1 state
in DSWink+1

1 (Z, ∅) is an element in DSWink+1
1 (∅, Z).

Next, consider the case when s is a P2 state. Since s ∈ DSWink+1
1 (Z, ∅), in game G2

Z,∅, P1 can ensure the
game to visit Z in at most (k + 1)-steps. Now, consider the state s in game G2

∅,Z . Since G2
Z,∅ = G, the rank

37

3.3 Decoy Allocation Problem

of s in G (and thus G2
Z,∅) must be smaller than or equal to k + 1 in game G2

∅,Z due to Corollary 3.3. That is,
s ∈ DSWink+1

1 (∅, Z).

Thm. 3.8 shows that any greedy algorithm to place traps and fake targets to solve Problem 3.2 must place
fake targets before placing the traps.

In our previous work [4], we have studied Problem 3.2 when only traps are placed, i.e., Y = ∅. Hence, we
first investigate how to place the fake targets to maximize the deceptive sure-winning region for P1, given
only fake targets. Then, we propose an algorithm to solve Problem 3.2 under sure winning condition by
sequentially placing the fake targets and traps.

The concept of compositionality is important in developing a greedy algorithm for Problem 3.2. It enables
us to incrementally place fake targets one by one, thereby constructing DSWin1(∅, Y) in an incremental
manner. The following proposition states that DSWin1(∅, Y) supports compositionality.

Proposition 3.2. Consider three placements of fake targets given by Y1 = {s1}, Y2 = {s2}, and Y = Y1 ∪ Y2.
LetDSWin1(∅, Y1) andDSWin1(∅, Y2) be P1’s deceptive sure-winning regions in the hypergames Ĥ1(∅, Y1) and
Ĥ1(∅, Y2), respectively. Then, P1’s deceptive sure-winning region DSWin1(∅, Y) in the hypergame Ĥ1(∅, Y) is
equal to the sure-winning region for P1 in the following game:

Ĥ1(∅, Y) = ⟨SWin2(G
2
∅,Y , F), A, T̂∅,Y ,

DSWin1(∅, Y1) ∪ DSWin1(∅, Y2)⟩,

where P1’s goal is to reach the target set DSWin1(∅, Y1)∪DSWin1(∅, Y2) and P2’s goal is to prevent P1 from
reaching the target set.

Proof. It is observed that the underlying graphs of the three deceptive reachability games, namely Ĥ1(∅, Y1),
Ĥ1(∅, Y2), and Ĥ1(∅, Y), are identical. They only differ in terms of the reachability objectives of P1. Applying
Proposition 2.3, we have

DSWin1(∅, Y) = DSWin1(∅,DSWin1(∅, Y1) ∪ DSWin1(∅, Y2)),

which concludes the proof.

Corollary 3.9. Given a set of fake targets, Y ⊆ SWin2(G,F) \ F and a state s ∈ SWin2(G,F) \ F , we have

DSWin1(∅, Y) ∪ DSWin1(∅, {s}) ⊆ DSWin1(∅, Y ∪ {s})

Proof. Follows immediately by Proposition 2.3 and the property of the sure-winning region that the goal
states of a reachability objective are a subset of the sure-winning region.

Thus, if we consider the size of DSWin1(∅, Y) to be a measure of the effectiveness of allocating the states
in SWin2(G,F) as fake targets, then Corollary 3.9 states that the effectiveness of adding a new state to a set of
decoys is greater than or equal to the sum of their individual effectiveness. In other words, DSWin1 operator
is superadditive [83], [84].

Let ⊎ represent the operation of composing two deceptive sure winning regions of P1. That is, given any
subset Y ⊆ SWin2(G,F) \ F and a state s ∈ SWin2(G,F) \ F ,

DSWin1(∅, Y ∪ {s}) = DSWin1(∅, Y) ⊎ DSWin1(∅, {s}).

With this notation, the problem of optimally placing the fake targets becomes equivalent to identifying a
set Y ∗ ⊆ SWin2(G,F) \ F such that,

Y ∗ = argmax
Y⊆SWin2(G,F)\F

∣∣∣∣∣⊎
s∈Y

DSWin1(∅, {s})

∣∣∣∣∣ (3.7)

subject to: |Y | ≤ N.

38

3.3 Decoy Allocation Problem

Let g(Y) =

∣∣∣∣ ⊎
s∈Y

DSWin1(∅, {s})
∣∣∣∣ be a function that counts the number of P1’s deceptive sure winning

states when the set Y ⊆ SWin2(G,F) \ F is allocated as fake targets.

Theorem 3.10. The following statements are true.

(a) g is a monotone, non-decreasing, and superadditive function.

(b) g is submodular if, for all Y ⊆ S \ F and any s ∈ S \ F , we have DSWin1(∅, Y) ∪ DSWin1(∅, {s}) =
DSWin1(∅, Y ∪ {s}).

(c) g is supermodular if, for all Y ⊆ S \ F and any s1, s2 ∈ S \ F and s1 ̸= s2, we have DSWin1(X,Y ∪
{s1}) ∩ DSWin1(X,Y ∪ {s2}) = DSWin1(X,Y)

Proof. (a). Since for any set Y ⊆ SWin2(G,F) \ F and any state s ∈ SWin2(G,F) \ (F ∪ Y), we have
DSWin1(∅, Y) ∪ DSWin1(∅, {s}) ⊆ DSWin1(∅, Y ∪ {s}), DSWin1 is a non-decreasing, monotone function.
Consequently, g is also a non-decreasing monotone. The function g is superadditive because, by Corollary 3.9,
DSWin1(∅, Y) ∪ DSWin1(∅, {s}) ⊆ DSWin1(∅, Y ∪ {s}). Therefore, g(Y) + g({s}) ≤ g(Y ∪ {s}).

(b). When DSWin1(∅, Y ∪ {s}) = DSWin1(∅, Y)∪DSWin1(∅, {s}), we have g(Y) =

∣∣∣∣ ⊎
s∈D

DSWin{s}

∣∣∣∣ =∣∣∣∣ ⋃
s∈D

DSWin{s}

∣∣∣∣, which is submodular [85].

(c). The function g is supermodular if and only if

g(Y ∪ {s1}) + g(Y ∪ {s2})− g(Y) ≤ g(Y ∪ {s1, s2}).

Given that DSWin1(∅, Y ∪ {s1}) ∩ DSWin1(∅, Y ∪ {s2}) = DSWin1(∅, Y) holds for any holds for any
Y ⊆ SWin2(G,F) and any s1, s2 ∈ SWin2(G,F), the LHS counts every state in DSWin1(∅, Y ∪ {s1}) ∪
DSWin1(∅, Y ∪ {s2}) exactly once. On the other hand, RHS counts the number of states in DSWin1(∅, Y ∪
{s1, s2}). By Proposition 3.2, we know that RHS may contain states that are neither in DSWin1(∅, Y ∪{s1})
nor DSWin1(∅, Y ∪ {s2}).

Given the properties of g(Y), we now consider the incremental placement of traps. The following propo-
sition, which follows from Proposition 2.3, provides insight into the construction of the stealthy deceptive
sure winning region when traps are placed given a fixed placement of fake targets.

Proposition 3.3. LetDSWin1({s1}, Y) andDSWin1({s2}, Y) be P1’s deceptive sure-winning regions in the hy-
pergames Ĥ1({s1}, Y) and Ĥ1({s2}, Y), respectively. Then, P1’s deceptive sure-winning regionDSWin1({s1, s2}, Y)
in the reachability game Ĥ1({s1, s2}, Y) is equal to the sure-winning region for P1 in the following game:

Ĥ1({s1, s2}, Y) = ⟨SWin2(G
2
X,Y , F), A, T̂ ,

DSWin1({s1}, Y) ∪ DSWin1({s2}, Y)⟩,

where P1’s goal is to reach the target set DSWin1({s1}, Y) ∪ DSWin1({s2}, Y) and P2’s goal is to prevent P1
from reaching the target set.

Now, recall the following theorem regarding the exclusive placement of traps is known from [4].

Theorem 3.11. For anyX ⊆ SWin2(G,F), let f(X) 7→ N be a function that counts the size ofDSWin1(X, ∅).
The following statements are true.

(a) f is a monotone, non-decreasing, and superadditive function.

39

3.3 Decoy Allocation Problem

Algorithm 3.3.1: Greedy algorithm for decoy placement.
1 Inputs: ⟨S,A, T, F ⟩: Base game, M : Number of traps to placed, N : Number of fake targets to be

placed;
2 Outputs: X,Y : Greedy placement of traps and fake targets;
3 X ← ∅, Y ← ∅;
4 while N − |Y | > 0 do
5 D ← {s ∈ SWin2(G,F) | s /∈ (F ∪ Y)};
6 if D is empty then
7 Exit While;
8 d← argmaxs |DSWin1(∅, Y ∪ {s})|;
9 Y ← Y ∪ {d};

10 whileM − |X| > 0 do
11 D ← {s ∈ SWin2(G,F) | s /∈ (F ∪X ∪ Y)};
12 if D is empty then
13 Exit While;
14 d← argmaxs |DSWin1(X ∪ {s}, Y)|;
15 X ← X ∪ {d};
16 return X,Y

(b) f is submodular if, for all X ⊆ S \ F and any s ∈ S \ F , we have DSWin1(X, ∅) ∪ DSWin1({s}, ∅) =
DSWin1(X ∪ {s}, ∅).

(c) f is supermodular if, for all X ⊆ S \ F and any s1, s2 ∈ S \ F and s1 ̸= s2, we have DSWin1(X ∪
{s1}, ∅) ∩ DSWin1(X ∪ {s2}, ∅) = DSWin1(X, ∅)

Given Theorems 3.8, 3.10 and 3.11, the optimal placement of decoys reduces to that of sequentially solving
two superadditive function maximization problems, first maximize g(Y) and then maximize f(Y). However,
to the best of our knowledge, there are no approximation algorithms available for maximizing superaddi-
tive functions that are applicable to our setting. Therefore, we present Alg. 3.3.1 that returns an (1 − 1/e)-
approximate solution to Problem 3.2 when either condition (b) or (c) in Theorems 3.10 and 3.11 are satis-
fied. This greedy algorithm is based on the GreedyMax algorithm for maximizing monotone submodular-
supermodular functions in [82] and extends the algorithm discussed in [4, Algorithm 1].

Alg. 3.3.1 starts with empty sets of states X and Y . It first constructs the set Y by adding a new fake
target in each iteration. In every step, a new fake target s is selected from the set of potential decoys D such
that its inclusion, along with the previously chosen fake targets, maximizes the coverage of P1’s deceptive
sure-winning region over the states in SWin2(G,F). The process continues until either a total of N fake
targets have been selected, or the set of potential decoys is empty. Subsequently, the algorithm proceeds to
construct X using a similar procedure, where the set of fake targets Y remains fixed, and a new trap is added
to X in each iteration.

Complexity. Let V,E denote the number of states and transitions in the underlying graph of the hy-
pergame H1(X,Y). Then, the time complexity of Alg. 3.3.1 is O((V + E) · (M +N)2). This is because the
DSWin1 computation, which uses Alg. 2.1.1, has a complexity of O(V + E) [21], and Alg. 3.3.1 must solve
|SWin2(G,F)| − |F | − j hypergames to determine the j-th decoy.

40

3.3 Decoy Allocation Problem

Figure 3.5: Gridworld example with Tom and Jerry with 2 cheese blocks.

3.3.6 Experimental Evaluation

We use two experiments to illustrate the key results from our paper. The first experiment employs a gridworld
example to demonstrate the proposed Alg. 3.3.1 and the effectiveness of the decoy placement. The second
experiment highlights several key properties of the decoy placement determined by Alg. 3.3.1.

Tom and Jerry Gridworld

In this experiment, we consider a gridworld example featuring the characters Tom and Jerry as shown in
Fig. (3.5). The 7× 7 gridworld has 2 cheese blocks. Tom is equipped with M mouse traps and N fake cheese
blocks to protect the real cheese from Jerry. Jerry’s objective is to steal the cheese without getting caught by
Tom (Tom captures Jerry when they are simultaneously in the same cell). On the other hand, Tom’s objective
is to place the decoys to safeguard the real cheese strategically. To achieve this, Tom intends to behave in a
way that would either lead to Tom capturing Jerry or induce Jerry to visit a decoy. Jerry is assumed to be
unaware of the presence of decoys. Both Tom and Jerry can occupy any cell in the gridworld that does not
contain an obstacle (black cells). To avoid trivial cases, we assume that the game does not start with Jerry in
a cell containing real cheese or a decoy.

A state in the base game between Tom and Jerry is represented as (tom.row, tom.col, jerry.row,

jerry.col, turn) that captures the positions (a position is expressed in the row-column format) of Tom
and Jerry and the player who selects the next action at that state. At any state, the player whose turn it is to
play chooses an action from the set {N,E, S,W} and moves to the cell in the intended direction. If the result
of the action leads the player to a cell outside the bounds of gridworld or an obstacle, the player returns to
the same cell where it started from.

We observe the effect of decoys on Tom’s stealthy deceptive sure winning region in the gridworld config-
uration shown in Fig. (3.5) with two blocks of real cheese placed at cells (1, 6) and (4, 6). We consider three
scenarios: (A) where M = 2 and N = 0, (B) where M = 1 and N = 1, and (C) where M = 0 and N = 2.
This results in the base game’s underlying graph having 4050 states and 16200 transitions. We use Alg. 3.3.1
for each scenario to determine the decoy placement under the sure winning criteria. The algorithm solves a
total of 85 hypergames during the two iterations of the While loop (specifically, on lines 6 and 13). The first
iteration explores 43 candidate cells without obstacles or real cheese to determine the placement of the first

41

3.3 Decoy Allocation Problem

decoy, while the second iteration explores 42. The algorithms are implemented in Python 3.101, and executed
on a Windows 10 machine with a core i7 CPU running at 3.30GHz and equipped with 32GB of memory.

To measure and compare the effectiveness of a given placement of traps and fake targets during the
iterations of Alg. 3.3.1, we introduce a real-valued metric called value of deception. Intuitively, the value
of deception measures the proportion of P2’s winning states in the base game G that become winning for
P1 in the hypergame Ĥ(X,Y) or H̃(X,Y). Under the stealthy deceptive sure winning condition, when
SWin2(G,F) ̸= F , the value of deception is defined as follows:

VoD(X,Y) =
|DSWin1(X,Y)|
|SWin2(G,F)| − |F |

IfSWin2(G,F) = F , i.e., when no states apart from the final states are winning for P2 inG, we setVoD(X,Y) =
0. The value of deception is defined analogously when the interaction is analyzed under an almost-sure win-
ning criterion.

We analyze the key insights obtained by solving 85 hypergames and examining the resulting value of
deception. Fig. (3.7) depicts a heatmap, where the value displayed in each cell denotes the value of deception
achieved by allocating the next decoy in that cell. The value in each cell is computed based on the map Z
constructed during each of the two iterations of Alg. 3.3.1. The figure includes two heatmaps each for the
three scenarios (A), (B), and (C). Specifically, Figures 3.7a and 3.7b depict the heatmaps corresponding to the
first and second iteration of the algorithm for scenario (A). Similarly, Figures 3.7c and 3.7d show the two
heatmaps for scenario (B), and Figures 3.7e and 3.7f for scenario (C).

In Fig. (3.7a), the cell values indicate the value of deception achieved by placing the first trap at each
respective cell. For instance, the value 0.28 in cell (1, 5) indicates the value of deception obtained by placing
the first trap at that location. The first trap is positioned at (1, 5) as it is the highest value. In Fig. (3.7b), the
cell values indicate the combined value of deception achieved by placing the second trap at a given cell in
addition to the trap selected in the first iteration. For instance, the value 0.5 in cell (5, 5) represents the value
of deception obtained by placing two traps: the first trap at location (1, 5) (as determined in the first iteration)
and the second trap at (5, 5). The second trap is placed there since the maximum deception value is observed
at (5, 5). The heatmaps in Figures 3.7c-3.7f are understood in a similar manner.

We now discuss key observations and insights from Fig. (3.7). First, observe that when only traps are
placed (Figures 3.7a, 3.7b, and 3.7d), the value of deception increases as we move closer to the real cheese.
This is because traps cut Jerry’s winning paths to real cheese. For instance, in Fig. (3.7a), suppose that Jerry
starts from a cell in row 1 and Tom starts from a cell (4, 1). Then, Jerry has a sure winning strategy to steal
the cheese at (1, 6). Now, consider two placements of the first trap: (1, 1) and (1, 5). The trap at (1, 1) will be
effective only if Jerry starts at (1, 0) since if Jerry begins from a cell to the right of (1, 1), she is guaranteed to
visit (1, 6) without being trapped or caught. On the other hand, the trap at (1, 5) will be effective whenever
Jerry starts between (1, 0) and (1, 4) because every path induced by any of her sure winning strategies to
visit (1, 6) from these initial positions passes through (1, 5). Hence, placing a trap at (1, 5) yields a higher
value of deception than placing it at (1, 1).

In contrast, fake cheese attracts Jerry by providing an alternative to visiting the real cheese. Therefore,
when placing the fake cheese, the value of deception increases as we move closer to the fake cheese. For
instance, in Fig. (3.7c), we notice that the values in cells (2, 3) and (3, 3) are higher than their neighboring
cells. This is because when fake cheese is present at either of these cells, Jerry believes there are three cheese
blocks in the game instead of two. Consequently, when Tom starts at (5, 1) and Jerry starts at any cell with
row coordinates of 0, 1, 2 and column coordinates of 0, 1, 2, Jerry’s subjectively rationalizable sure winning
strategy would lead him to visit either the fake cheese at (2, 3) or (3, 3) instead of the real cheese at (1, 6) or
(4, 6). Since highest value of deception is observed at cell (3, 3), Tom places the first fake cheese at that cell.

1The source code is available at https://github.com/abhibp1993/decoy-allocation-problem.

42

https://github.com/abhibp1993/decoy-allocation-problem

3.3 Decoy Allocation Problem

The results also confirm our conclusion that fake targets have a higher value than traps when the game is
analyzed under sure winning condition. To see this, compare the value of deception for any cell in Fig. (3.7d)
and Fig. (3.7f), and Fig. (3.7d) and Fig. (3.7f). We observe that the value in the second heatmap (where a fake
cheese is placed in the cell) is greater than or equal to that in the first heatmap (where a trap is placed in the
cell).

Decoy Placement over Randomly Generated Game on Graphs

In this second experiment, we compare the effectiveness of placing traps versus fake targets under stealthy,
deceptive sure and almost-sure winning conditions. We employ randomly generated graphs to explore in-
teresting case studies. Each game consists of 150 states, of which 75 are P1 states, and the remaining are P2
states. At every state in each game, we randomly select an integer between 1 and 5 to determine the number
of actions enabled at that state. Subsequently, the next state on performing each enabled action at a given
state is determined at random.

With these exploratory experiments, we focus our analysis on four games on graphs as these present
interesting results. For each of the four games, we use Alg. 3.3.1 to determine decoy placement and compute
the corresponding value of deception under four conditions: (i) placing 5 traps under stealthy deceptive sure
winning condition, (ii) placing 5 fake targets under stealthy deceptive sure winning condition, (iii) placing 5
traps under stealthy deceptive almost-sure winning condition, and (iv) placing 5 fake targets under stealthy
deceptive almost-sure winning condition. Fig. (3.6) depicts the variation in the value of deception for cases
(i)-(iv) as we progressively introduce the traps or fake targets in four selected games.

Figures 3.6a and 3.6b present instances that align with our theoretical findings. Since the dashed blue line
remains at par or below the solid blue line, we observe that the value of deception obtained by placing fake
targets is greater than or equal to that obtained by placing traps, both under stealthy deceptive sure winning
condition. This confirms the findings in Thm. 3.8. Furthermore, the overlapping of the red dotted line and
green lines indicates that placing traps and fake targets under stealthy deceptive almost-sure winning condi-
tion yield the same value of deception, which is aligned with the findings of Thm. 3.6. Lastly, the outcomes also
align with the implications outlined in Thm. 3.7, as both the red-dotted and green lines consistently remain
positioned below the blue lines. Consequently, the value of deception achieved under the sure winning condi-
tion is consistently greater than or equal to that attained under the almost-sure winning condition. Fig. (3.6b)
presents a special case wherein the intrinsic topology of the game graph leads to a convergence of deception
values across all four cases (i)-(iv).

Figures 3.6c and 3.6d present instances where the results appear to diverge from our theoretical predic-
tions. In Fig. (3.6c), we encounter a situation where the value of deception achieved under the sure winning
condition by strategically placing traps is greater than the value obtained by placing fake targets. This out-
come seemingly contradicts the assertions made in Thm. 3.8. In Fig. (3.6d), we encounter another scenario
where the value of deception obtained by deploying either traps or fake targets under the almost-sure win-
ning condition exceeds the value attained by placing fake targets under the sure winning condition, thereby
deviating from the anticipated results stipulated in Thm. 3.7. However, these disparities can be attributed to
the greedy approach employed by Alg. 3.3.1. For instance, in Fig. (3.6c), Alg. 3.3.1 determined the states s22,
s80 as the first two fake targets and s101, s74 as the first two traps. To understand these choices, let us
examine the values of deception for the following placements:

VoD(∅, {s22}) = 0.7500, VoD(∅, {s101}) = 0.6805

VoD({s22}, ∅) = 0.4166, VoD({s101}, ∅) = 0.6805

VoD(∅, {s101, s74}) = 0.8055, VoD(∅, {s22, s80}) = 0.7916

We observe that the value of deception attained by placing fake targets at s101, s74 is higher than that
obtained by placing them at s22, s80. Thus, we would expect the algorithm to select the latter states to be

43

3.3 Decoy Allocation Problem

(a)

(b)

(c)

(d)

Figure 3.6: The value of deception obtained by placing traps and fake targets under stealthy deceptive sure
and almost-sure winning conditions in four selected games.

the fake targets. However, the Alg. 3.3.1 follows a greedy approach. Since the value of deception when the
first fake target is placed at s22 is greater than when it is placed at all other states, including s101, s22 is
selected as the first fake target. Given the first fake target, the choice of the second fake target that yields that
maximum value of deception is s80. In other words, the deviation from theoretical expectations is due to the
sub-optimal placement suggested by the greedy algorithm.

We conclude by noting that the value of deception increases monotonically until the value of 1.0 is at-
tained. In any game, the value of 1.0 is guaranteed to be achieved if there is no bound on the number of
decoys. In the worst case (for example, consider star topology), a decoy must be placed at every state for the
value of deception to be one.

44

3.3 Decoy Allocation Problem

(a) Scenario (A): Value of deception when the first trap is
placed within the given cell.

(b) Scenario (A): Value of deception when first trap is
placed at (1, 5) and second trap is placed within the given
cell.

(c) Scenario (B): Value of deception when first fake cheese
is placed within the given cell.

(d) Scenario (B): Value of deception when first fake cheese
is placed at (4, 5) and a trap is placed within the given cell.

(e) Scenario (C): Value of deception when first fake cheese
is placed within the given cell.

(f) Scenario (C): Value of deception when first fake cheese
is placed at (4, 5) and the second fake cheese is placed
within the given cell.

Figure 3.7: The values of deception compared by Alg. 3.3.1 in each of the two iterations to determine the two
decoys for scenarios (A)-(C).

45

3.3 Decoy Allocation Problem

46

Chapter 4

Synthesis withMisperception of Action Ca-
pabilities

This chapter investigates the synthesis of deceptive winning strategies for the sub-class of games with in-
complete information where P2 misperceives P1’s action capabilities. These scenarios often arise in various
domains, such as football, where the opposing team may be uncertain about a player’s newly acquired skills
before a match, or in economic situations where a firm may be unaware of another firm developing a similar
product.

In a game, when a player realizes deceptive tactics are in play, their subsequent behavior can be uncertain
[86]. There are two potential outcomes in this scenario. The player may opt to withdraw from the game; for
instance, when an attacker learns that the defender has hidden action capabilities, it may choose to discontinue
the attack. Alternately, the player may choose or may be forced to continue their engagement by adapting
their knowledge and, consequently, their strategy; for instance, in football, the game must continue even after
the new capabilities of the opponent team are revealed. This chapter focuses primarily on investigating the
behavior of players in the latter case.

4.1 Effect of Action Misperception

Consider a reachability game between P1 and P2 characterized by a deterministic two-player turn-based zero-
sum game, G = ⟨S,Act, T, s0, F ⟩, as defined in Def. 2.2. In this game, P1’s objective is to visit a final state in
F . P2’s objective is to prevent the game from reaching a final state.

In this chapter, we study the game in which P2 does not know the complete action set of P1 at the begin-
ning. Hence, the information structure of the game is captured by the following assumption.

Assumption 4.1 (Information Structure). P1 knows its complete action set Act1. P2 misperceives P1’s action
set to be a subsetX ⊊ Act1. The components S and F of the game arena G are common knowledge for both the
players.

Perceptual games. As a result of Assumption 4.1, the interaction between P1 and P2 is a game with in-
complete information about action capabilities. Hence, P1 and P2 play different games in their minds to
synthesize their respective winning strategies. P1’s perceptual game is identical to the true game; ⟨S,Act1 ∪
Act2, T, s0, F ⟩. Whereas, P2’s perceptual game is a game under misperception; ⟨S,X ∪ Act2, T, s0, F ⟩. Let
us formalize the new notation used to distinguish between the perceptual games of P1 and P2.

Notation 4.1. Given a subset of P1’s action set, X ⊆ Act1, let G(X) = ⟨S,X ∪ Act2, T, s0, F ⟩ denote the
deterministic two-player turn-based game on a graph in which P1’s action set X .

47

4.2 Dynamic Hypergame on Graph

Therefore, P1’s perceptual game is G(Act1) and P2’s perceptual game is G(X). Assuming P1 and P2 to be
rational players, they would use the solution approach reviewed in Sec. 2 to compute their winning strategies
in their respective perceptual games. However, P1 is likely to compute a conservative strategy because P1
over-estimates the information available to P2. Naturally, we want to knowwhether P1 can improve its strategy
if P1 is made aware of P2’s current misperception X?

Before we answer the above question, recall that we allow P2’s misperception to evolve during the game.
For instance, what would happen when P2 observes P1 playing an action a ∈ Act1, which P2 did not believe
to be in P1’s action set? We might argue that P2 will at least add a new action a1 to its perceived action set,
X , of P1. Thus, the new perception would be X ∪{a1}. Also, P2 might be capable of complex inference. That
is, on observing that P1 can perform an action a1, P2 might infer that P1 must be capable of actions a2 and
a3, thus, updating its perception set to X ∪ {a1, a2, a3}. To capture such inference capabilities, we introduce
a generic perception update function for P2.

Definition 4.1 (Inference Mechanism). A deterministic inference mechanism is a function κ : 2Act1×Act1 →
2Act1 that maps a subset of actions X ⊆ Act1 and an action a ∈ Act1 to an updated subset of actions
Y = κ(X, a) such that a ∈ Y .

If P2’s misperception evolves during the game, then P1 must strategize when to reveal an action that is not
currently known to P2. By doing so, P1 may partially control the evolution of P2’s perception to its advantage.
Such a strategy, where P1 intentionally controls P2’s misperception, is a deceptive strategy, by definition. We
formalize our problem statement.

Problem 4.1. Consider a reachability game G in which Assumption 4.1 holds. If P1 is informed of the initial
misperception of P2, X0, and its inference mechanism η, then synthesize a deceptive strategy using which P1
can satisfy its reachability objective under sure and almost-sure winning conditions.

In particular, we want to investigate whether the use of deception is advantageous for P1 or not. We say
P1 gets advantage with deception if at least one game state that is not sure/almost-sure winning for P1 in the
game without deception becomes winning for P1 with the use of deception.

4.2 Dynamic Hypergame on Graph

When two players play different games in their minds, their interaction can be modeled as a hypergame [27].
While P1 and P2 play different games in their minds as per Problem 4.1, their interaction is distinguished by
the ability of P2 to update its game as P2 learns about P1 actions that were previously unknown to him. The
hypergame model described in Sec. 2.3 is insufficient to model this situation. Hence, we propose a new model
called dynamic hypergame that makes the evolution of P2’s game explicit.

The first-level dynamic hypergame is the tuple of the perceptual games being played by the players,

H1(X) = ⟨G(Act1), G(X)⟩,

where, given the current perception of P2, X ⊆ Act1, P1 and P2 respectively solve the games G(Act1)
and G(X) to compute their winning strategies. Notice the dependence of the hypergame H1(X) on P2’s
perception X captures the fact that H1(X) is indeed a dynamic hypergame.

Given that P1 is aware of the P2’s perception, the interaction is modeled as a second-level hypergame.
Specifically, we assume P1 knows X . Therefore, the second-level hypergame is H2 = ⟨H1(X), G(X)⟩.
Similar to Ch. 3, we introduce a graphical model called the hypergame on a graph to represent the dynamic
hypergame H2(X).

48

4.2 Dynamic Hypergame on Graph

s0

s1 s2

start

s3⊤

a1

a2

b1

b2 a1 a2

Figure 4.1: An example game on graph. The state space is divided into two parts: blue states SWin1 = {s0, s1}
are sure (almost-sure) winning for P1, and red states SWin2 = {s2, s3} are sure (almost-sure) winning for P2.

Definition 4.2 (Dynamic Hypergame Transition System). Let Γ = ℘(Act1) be the powerset of P1’s action
set. The dynamic hypergame on graph representing the second-level dynamic hypergame H2(X) is the tuple,

H = ⟨V,Act,∆, v0,F⟩,

where

• V = S × Γ is the set of hypergame states,

• Act = Act1 ∪Act2 is the set of actions of P1 and P2,

• ∆ : V ×Act→ V is the transition function such that (s′, X ′) = ∆((s,X), a) if and only if s′ = T (s, a)
and X ′ = κ(X, a),

• v0 ∈ V is an initial state,

• F = F × Γ is the set of final states.

Intuitively, the hypergame on a graph can be viewed as unrolling the game with different information
states of P2.

Example 4.1 (Running Example). Consider the game graph as shown in Fig. (4.1). The circle states {s1, s3}
are P1 states and the square states {s0, s2} are P2 states. The objective of P1 is to reach to the final states set
F = {s0} from the initial state s2. P1’s action set is Act1 = {a1, a2} and P2’s action set is Act2 = {b1, b2}.

The sure (or almost-sure) winning region of P1 in the game is SWin1 = {s0, s1}, shown in Fig. (4.1) as
blue states. This is intuitively understood as follows. P1 can win from state s1 by choosing the action a1.
However, the states SWin2 = {s2, s3}, shown in Fig. (4.1) as red states, are losing for P1 because P2 has a
strategy to indefinitely restrict the game within SWin2 by always selecting action b2 at state s2.

Suppose that the action a1 of P1 is initially not known to P2. Thus, at the beginning of the interaction,
P2’s perception of P1’s action set is X0 = {a2} and its perceptual game is the game G(X0) as shown in
Fig. (4.2). Notice that Fig. (4.2) does not include edges corresponding to action a1. On the other hand, P1’s
perceptual game is same as the true game G(Act1) shown in Fig. (4.1). Given that the final states set {s0} is
not reachable in G(X0), P2 misperceives both of its actions, b1 and b2, to be safe to play at state s2. However,
in reality, only the action b2 is safe in the true game, G1.

Moreover, when P1 is aware of P2’s misperception X0, P1 may compute a deceptive strategy which would
not use a1 unless the game state is s1. Because, if P1 uses a1 at s3 then P2 will update its perception to
X1 = Act1 and conclude that action b1 is unsafe to play at state s2. In this case, P1 will not be able to win
the game starting at s2 or s3.

The hypergame corresponding to above interaction is shown in Fig. (4.3). The figure only shows the
reachable states. Every state in the hypergame is represented as a tuple of a game state and the current

49

4.2 Dynamic Hypergame on Graph

s0

s1 s2

start

s3⊤

a2

b1

b2 a2

Figure 4.2: Perceptual game of P2 when P2 misperceives P1’s action set to be X0 = {a2}. The state space is
divided into two parts: the blue state {s0} is perceived by P2 as the only winning state of P1, and the red states
{s1, s2, s3} are perceived by him to be winning for himself. Due to misperception, this partition is different
from the partition in Fig. (4.1).

(s0, X1)

(s1, X0) (s2, X0)

start

(s3, X0) (s1, X1)

(s2, X1) (s3, X1)

⊤

a1

a2

b1

b2 a1a2

a1

a2 b1

b2

a1

a2

Figure 4.3: The dynamic hypergame on graph. The state space is divided into three parts: blue states
{(s0, X1), (s1, X0), (s1, X1)} are sure (almost-sure) winning for P1, and red states {(s2, X1), (s3, X1)}
are sure (almost-sure) winning for P2 regardless of whether P1 uses deception or not. The green states
{(s2, X0), (s3, X0)} are almost-sure winning, but not sure winning, for P1 when P1 uses deception.

perception of P2 at that state. Given X0 = {a2}, two perceptual games of P2: G({a2}) and G({a1, a2}), are
possible. Any hypergame-play that visits the final state (s0, X1) is winning for P1. Therefore, the hypergame-
plays τ1 = (s2, X0)b1(s1, X0)a1(s0, X1) and τ2 = (s2, X0)b2(s3, X0)a1(s2, X1)b1(s1, X1)a1(s0, X1) are the
examples of winning plays for P1. Interestingly, in the next section, we will show that the play τ2 may never
occur if both players act rationally. However, it is possible for the play τ1 to be observed.

4.2.1 P2’s Subjectively Rationalizable Strategy

To design an algorithm to synthesize a deceptive strategy in the hypergame H, we must reason about P2’s
perception and its SR strategy. Because P2 plays a safety game, its strategy in a game on graph is a permissive
strategy. Recall that an action is permissive for a player at a given state if the player can stay within the win-
ning region by performing that action [87]. However, in a game with incomplete information, whether a state
is perceived to be winning or not depends on the player’s perception. The following definition characterizes
the actions that P2 considers to be rational given its perceptual game. As the perceptual game of P2 evolves
during the interactions, so does the set of its subjectively rationalizable actions.

50

4.2 Dynamic Hypergame on Graph

Definition 4.3 (P2’s Subjectively Rationalizable Actions). Let u = (s,X) ∈ V2 and v = (s′, X) ∈ V2 be two
hypergame states such that v = ∆(u, b) for some b ∈ Act2. Then, the set of P2’s subjectively rationalizable
actions at u is the set

SRAct2(u) = {a ∈ Act2 | s′ ∈ SWin2(X)}.

In words, the set of P2’s subjectively rationalizable actions at a given state u = (s,X) is the set of
permissive actions for P2 in the perceptual game with action set X .

We make two important observations about P2’s subjectively rationalizable actions. First, P2’s action has
no effect on its perception. Therefore, if P2’s perception was X at a state u ∈ V2 then, for any b ∈ Act2, P2’s
perception at a state v = ∆(u, b) is also X . This observation follows from Def. 4.1.

The second observation states that if an action of P2 is permissive at a some state in which P2 knows the
complete action set of P1 then it is subjectively rationalizable under any perception. This is because a sure
winning action of P2 remains a sure winning action regardless of P2’s misperception.

Proposition 4.1. If a P2 action b ∈ Act2 is subjectively rationalizable at the state (s,Act1) then it is subjectively
rationalizable at any state (s,X) ∈ V2 for any X ⊆ Act1.

It is noted that the converse of Proposition 4.1 may not hold. That is, under misperception, P2 might
misperceive its non-permissive action to be permissive. Consequently, if P1 could trick P2 into selecting such
a non-permissive action, P1 may force the game from a P1’s losing state to a P1’s winning state in the true
game, G(Act1). In the next two sections, we investigate when P1 has a strategy to enforce P2 into choosing
a non-permissive action under sure and almost-sure winning conditions.

4.2.2 Deceptive Sure Winning Strategy

Given the notion of P2’s subjectively rationalizable strategy, we formally define a deceptive sure winning
strategy of P1. In contrast to Ch. 3.1, we do not require the deceptive strategy to be stealthy since we want
P1 to influence P2’s perception.

Definition 4.4 (Deceptive Sure Winning Strategy). A memoryless, deterministic strategy π1 : V → Act1 is
said to be a deceptively sure winning for P1 at a state v ∈ V if and only if, for any memoryless, deterministic
subjectively rationalizable strategy µ : V2 → Act2 of P2 and for any run ρ ∈ Outcomes(v, π1, µ), we have
Occ(ρ) ∩ F ̸= ∅.

In Def. 4.4, P1 reasons only about all possible subjectively rationalizable strategies of P2, which is in
contrast to Def. 2.3 where P1 reasons about all possible strategies of P2. A hypergame state v ∈ V from
which P1 has a deceptively sure winning strategy is called as a deceptively sure winning state. The exhaustive
set of deceptively sure winning states is called the deceptively sure winning region, denoted by DSWin1. Note
that deceptive sure winning region cannot be defined for P2 because P2 does not know the hypergame, H .

The following theorem proves a negative result that deceptive sure winning strategy provides P1 with no
advantage over a non-deceptive sure winning strategy.

Theorem 4.1. LetDSWin1 ⇂S= {s ∈ S | v ∈ DSWin1 and s = v ⇂S} be the set of projection of the deceptively
sure winning states onto the game state space. It holds that SWin1(Act1) = DSWin1 ⇂S .

To prove Thm. 4.1, we need the following lemma which states that every non-deceptively sure winning
state is also deceptively sure winning.

Lemma 4.1. If a game state s ∈ S is a non-deceptive sure winning state for P1 then, for any X ∈ Γ, the
hypergame state v = (s,X) is a deceptively sure winning state for P1.

Now, we prove Thm. 4.1.

51

4.2 Dynamic Hypergame on Graph

Proof (Thm. 4.1). (⊆) By Proposition 4.1, at given any state v = (s,X) ∈ V2 such that s ∈ SWin2(Act1),
every permissive action of P2 at s is also subjectively rationalizable at v for any X ⊆ Act. Therefore, P2’s
subjectively rationalizable strategy µ at v may select a truly permissive action. By definition, v cannot be sure
winning for P1.

(⊇) Follows from Lma. 4.1.

4.2.3 Deceptive Almost-Sure Winning Strategy

The fundamental reason behind why deception does not yield advantage under sure winning condition is
that the players use deterministic strategies. If there exists a truly permissive action at a P2 state, there is a
possibility that P2’s subjectively rationalizable strategy chooses that action every time that state is visited.
In this section, we study P1’s deceptive strategy under almost-sure winning condition in which players use
randomized strategies. In contrast to sure winning condition, we show that P1 may gain advantage under
almost-sure winning condition.

Assumption 4.2. At a state v ∈ V2, P2 selects every subjectively rationalizable action b ∈ SRAct2(v) with a
positive probability. That is, Supp (µ(v)) = SRAct2(v).

Now, we formalize the notion of deceptive almost-sure winning strategy.

Definition 4.5 (Deceptive Almost-Sure Winning Strategy). Given a hypergame state v ∈ V , a memoryless,
randomized strategy π is said to be deceptive almost-sure winning strategy for P1 if and only if for every mem-
oryless, randomized subjectively rationalizable strategy µ of P2 satisfying Assumption 4.2, the probability
that a run ρ ∈ Outcomes(v, π, µ) in the hypergameH satisfies the condition Occ(ρ) ∩ F ̸= ∅ is one.

The states at which P1 has a deceptive almost-sure winning strategy are called as deceptive almost-sure
winning states. The exhaustive set of all deceptive almost-sure winning states is called deceptive almost-
sure winning region and is denoted by DASWin. Note that deceptive almost-sure winning region cannot be
defined for P2 because P2 does not know the hypergame, H .

We propose Alg. 4.2.1 to compute the deceptive almost-sure winning region for P1. The idea behind
Alg. 4.2.1 is to identify and exploit the states v = (s,X) at which P2’s subjectively rationalizable actions
SRAct2(v) includes some of its non-permissive actions in the true game, G(Act1). To this end, we define the
following sub-routines:

DAPre11(U) = {v ∈ V1 | ∃a ∈ Act1 s.t. ∆(v, a) ∈ U}, (4.1a)
DAPre21(U) = {v ∈ V2 | ∀b ∈ SRAct2(v) s.t. ∆(v, b) ∈ U}, (4.1b)
DAPre12(U) = {v ∈ V1 | ∀a ∈ Act1 s.t. ∆(v, a) ∈ U}, (4.1c)
DAPre22(U) = {v ∈ V2 | ∀b ∈ SRAct2(v) s.t. ∆(v, b) ∈ U}. (4.1d)

Proposition 4.2. If a game state s ∈ S is a non-deceptive almost-sure winning state for P1 then, for any γ ∈ Γ,
the hypergame state v = (s, γ) is a deceptively almost-sure winning state for P1.

Alg. 4.2.1 works as follows. Following Proposition 4.2, we initialize the algorithm withZ0 = ASWin1(Act1)×
Γ and then iteratively compute the sets Ck and Zk+1 for k = 0, 1, . . . until a fixed-point is reached. In the
k-th iteration, the set Ck ⊆ V \ Zk is computed using sub-routine Safe-2, which identifies the subset of
states in V \ Zk from which P1 has no strategy to exit V \ Zk. In other words, Ck is a set of states in which
P2 can enforce P1 to stay. The sub-routine Safe-2 starts with Y0 = V \ Zk and iteratively computes Yj for
j = 0, 1, . . . by identifying (i) W1 = DAPre12(Yj): P1 states within Yj , from which any action a ∈ Act1 leads
to a state in Yj , and (ii) W2 = DAPre22(Yj): P2 states within Yj , from which any of its subjectively ratio-
nalizable action a ∈ SRAct2(v) leads to a state in Yj . Next, the set Zk+1 is computed using the sub-routine
Safe-1, which identifies the subset of states in V \ Ck from which P1 is ensured to visit Zk in one-step.

52

4.2 Dynamic Hypergame on Graph

Algorithm 4.2.1: Deceptive almost-sure winning region for P1.
1 function DASW(H) is
2 Z0 = ASWin1(Act1)× Γ;
3 repeat
4 Ck = Safe-2(V \ Zk) ;
5 Zk+1 = Safe-1(V \ Ck);
6 until Zk+1 = Zk;
7 return DASWin1 = Zk;
8 function Safe-i(U) is
9 Y0 = U ;

10 repeat
11 W1 = DAPre1i (Yk);
12 W2 = DAPre2i (Yk);
13 Yk+1 = Yk ∩ (W1 ∪W2);
14 until Yk+1 = Yk;
15 return Yk;

The sub-routine Safe-1 starts with Y0 = V \ Ck and iteratively computes Yj for j = 0, 1, . . . by identify-
ing (i) W1 = DAPre11(Yj): P1 states within Yj from which P1 has an action to enter Yj in one step, and (ii)
DAPre21(Yj): P2 states within Yj from which any subjectively rationalizable action of P2 leads to a state in Yj .
It is observed that as k increases, the set Ck shrinks while the set Zk expands. Intuitively, this is because the
states in Ck may have transitions leading outside Ck, while remaining within V \Zk. If a state, say v ∈ V \Zk

that is not in Ck, is included in Zk+1, then all states in Ck that have a transition going to v are excluded from
Ck+1 and have a potential to be included in Zk+2. However, once the fixed-point is reached, say in iteration
K , we show that all deceptive almost-sure winning states of P1 are included in ZK . A deceptive almost-sure
winning strategy can then be computed based on the proof of Thm. 4.4.

Example 4.2 (Example (4.1) contd.). Consider the hypergame graph as shown in Fig. 4.3. Recall from Ex-
ample (4.1) that Almost-Sure Winning (ASW) region is ASWin1(Act1) = {s0, s1}, therefore, we have Z0 =
{(s0, X2), (s1, X2), (s1, X1)} (we omit (s0, X1) as it is unreachable). The subjectively rationalizable actions
for P2 are SRAct2((s2, X1)) = {b1, b2} and SRAct2((s2, X2)) = {b2}.

Iteration 1 of DASW. The first step is to compute C0, i.e.the subset of V \ Z0 which P2 perceives to be
safe for himself. The Safe-2 sub-routine takes 3 iterations to reach a fixed-point, at the end of which C0 =
{(s2, X2), (s3, X2)}. The next step is to compute Z1, which the largest subset of V \C0 in which P1 can stay
indefinitely. The Safe-1 sub-routine takes 2 iterations to reach a fixed point. In its first iteration, DAPre11
adds a state (s3, X1) and DAPre21 adds a state (s2, X1) to Z1. The interesting observation here is that (s2, X1)
is added because the actions b1 and b2 are subjectively rationalizable actions for P2, both of which lead to a
state in V \ C0.

Iteration 2 of DASW. The fixed-point of DASW algorithm is reached in this iteration with Z2 = {(s0, X2),
(s1, X2), (s1, X1), (s2, X1), (s3, X1)}. The states (s2, X1) and (s3, X1) are identified as the deceptive almost-
sure winning states for P1.

Using intuition from Example (4.2) with the observation that ASWin1(Act1) ⊆ DASWin1 ⇂S holds for
every hypergameH by definition, we formalize our first key result. It establishes that using action deception
could be advantageous to P1.

53

4.2 Dynamic Hypergame on Graph

Theorem 4.2. Let DASWin1 ⇂S= {s ∈ S | v ∈ DASWin1 and s = v ⇂S} be the set of projection of the decep-
tively almost-sure winning states onto the game state space. There exists a hypergameH for whichASWin1(Act1)
is a strict subset of DASWin1 ⇂S .

Next, we proceed to prove the correctness of Alg. 4.2.1 by showing that from every state in DASWin1, we
can construct a deceptive almost-sure winning strategy for P1 to ensure a visit to final states with probability
one. We first prove two lemmas.

Lemma 4.2. In the i-th iteration of Alg. 4.2.1, P1 has a strategy to restrict the game indefinitely within Zi, for
all states in Zi.

Proof. (v ∈ V2). For a P2’s state in Zi, every state v′ = ∆(v, b) for a subjectively rationalizable action b ∈ µ(v)
of P2 is in Zi, by definition of DAPre21. Hence, no action of P2 at any state v ∈ Zi can lead the game state
outside Zi.

(v ∈ V1). For every P1’s state in Zi, there exists an action a ∈ A such that the successor v′ = ∆(v, a) is in
Zi, by definition of DAPre11. Hence, P1 always has an action, consequently a strategy, to stay within Zi.

Lemma 4.3. For every state v ∈ Zi+1 \ Zi added in the i-th iteration of Alg. 4.2.1. The, there exists an action
that leads into Zi.

Proof. Given any state v ∈ V at the beginning of the i-th iteration, observe that it would belong to either
Ci−1, Zi or V \ (Ci−1 ∪Zi). We will prove the statement by showing that the every new state added to Zi+1

has at least one transition into Zi.
Consider i-th iteration of Alg. 4.2.1. The sub-routine Safe-2 will add a P1 state v ∈ V1 \Zi to Ci if all the

actions of P1 stay within V \Zi. Similarly, Safe-2 will include a P2 state v ∈ V2 \Zi in Ci if all subjectively
rationalizable actions of P2 lead to a state within V \ Zi. Therefore, a state that is not included in Ci must
have at least one action leading outside V \Zi, i.e.entering Zi. In the next step, the sub-routine Safe-1 may
add new states to Zi+1 from the set V \ Ci. But, all states in V \ Ci have an action entering Zi. Hence, all
new states added to Zi+1 satisfy the statement.

The following observation follows immediately from Lma. 4.3.

Corollary 4.3. For every i ≥ 0, we have Zi ⊆ Zi+1.

From Lma. 4.3, it is easy to see that P1 has a strategy to reach Zi from a state added to Zi+1 in one-step.
However, this is not true for P2. From a P2 state in Zi+1, there exists a positive probability to reach Zi because
of Assumption 4.2. In the next theorem, we prove a stronger statement which states that from every state in
Zi+1, P1 can not only reach Zi with positive probability, but with probability one.

Theorem 4.4. From every state v ∈ DASWin1, P1 has a strategy to satisfy φ with probability one.

Proof. For any v ∈ Zi, i > 1, P1 has a strategy to stay within Zi indefinitely, by Lma. 4.2. Furthermore,
by Lma. 4.3, the probability of reaching to a state v′ ∈ Zi−1 from v is strictly positive. Thus, given a run of
infinite length, the probability of reaching Zi−1 from Zi is one. By repeatedly applying this argument, the
probability of reaching Z0 from Zi is one.

The deceptive almost-sure winning strategy can be constructed based on the proof of Thm. 4.4. At a P1
state v ∈ V1, if i ≥ 1 is the smallest integer such that v ∈ Zi, then π(v) = {a ∈ Act1 | v′ = ∆(v, a) and v′ ∈
Zi−1} is the deceptive almost-sure winning strategy of P1 at v. Given π(v) is a set, P1 can select any action
from this set. We also state the following two important corollaries that follow from Thm. 4.2 and Lma. 4.3.

We conclude this section with the complexity analysis of our proposed algorithm.

Theorem 4.5. The space and time required by Alg. 4.2.1 scales quadratically with the size of the hypergameH.

54

4.3 Case Study: Capture-the-Flag Game on Gridworld

Figure 4.4: An example of capture-the-flag game between P1 (superman) and P2 (devil) played over a 5 × 5
grid world.

4.3 Case Study: Capture-the-Flag Game on Gridworld

In this section, we illustrate the advantages of using action deception using a simplified version of capture-
the-flag game [88] played over a 5×5 gridworld, like the one shown in Fig. (4.4). The gridworld is partitioned
into P1 (blue) and P2 (red) territories. P1’s objective in the game is to capture both the flags from P2’s territory,
while that of P2 is to prevent P1 from capturing the flags. We restrict P2 to move only within its own territory.
Under this setting, we are interested to determine the number of game states from which P1 has a deceptive
sure (almost-sure) winning strategy and compare it with the sizes of the non-deceptive sure (almost-sure)
winning regions. We introduce the following notion of value of deception, denoted by VoD to quantify the
advantage gained by P1 by using deception.

VoD =

|DSWin1⇂S |−|SWin1(Act1)|

|SWin2(Act1)| under deceptive sure winning condition
|DASWin1⇂S |−|ASWin1(Act1)|

|ASWin2(Act1)| under deceptive almost-sure winning condition
0 if |ASWin2(Act1)| = 0

(4.2)

To understand Eq. (4.2), first, recall that P1 can win from any state in ASWin1(Act1) regardless of whether
P1 uses deception or not. Thus, the benefit of deception can be quantified by counting the number of P2’s
winning states in the game with complete, symmetric information (i.e. in ASWin2(Act1)) that P1 can win
from by using deception. Notice that VoD takes a value between 0 and 1. VoD = 0 represents the case when
P1 gains no advantage by using deception. VoD = 1 represents the case in which P1 gains maximum benefit
that is possible by using deception, i.e.P1 can leverage P2’s misperception to win from all of P2’s winning
states in ASWin2(Act1).

To demonstrate the applicability of our proposed approach to a broad range of reachability objectives, we
specify P1’s objective using a scLTL formula. We consider the following two scLTL objectives for P1 in this
experiment.

1. P1 must capture both FLAG1 and FLAG2 in any order.

♢FLAG1︸ ︷︷ ︸
Eventually capture FLAG1

∧ ♢FLAG2︸ ︷︷ ︸
Eventually capture FLAG2

(4.3)

55

4.3 Case Study: Capture-the-Flag Game on Gridworld

1start

2

3

0

a b

a b

⊤

¬a

¬a

¬a ∧ ¬b

(a) DFA of φ1 = ♢ a ∧ ♢ b

1start 2

3

0

¬a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c

b ∨ c

¬b ∧ ¬c
b

c

⊤

⊤

(b) DFA of φ2 = ((¬b ∧ ¬c)U a) ∧ (cU b)

Figure 4.5: The sub-figure (a) shows the DFA equivalent to the scLTL formula given in Eq. (4.3) and sub-figure
(b) shows the DFA equivalent to scLTL formula in Eq. (4.4). For brevity, we use a = FLAG1, b = FLAG2 and
c = collide in the figure.

2. P1 must first capture FLAG1 and then capture FLAG2. Until then, P1 must avoid colliding with P2.

(¬FLAG2 ∧ ¬collide)UFLAG1︸ ︷︷ ︸
don’t collide or collect FLAG2 until FLAG1 is collected

∧ ¬collide UFLAG2︸ ︷︷ ︸
don’t collide until FLAG2 is collected

(4.4)

The dynamics of the capture-the-flag game are as follows. Both the players can move in 4 compass direc-
tions: N, E, S, W. P2 cannot enter any cell containing a wall or a fence, and presumes this to be the case for
P1 as well. However, initially unknown to P2, P1 has the following special actions: JumpN, JumpE, JumpS,

JumpW and Cut. Using the Jump action P1 can jump over a wall in a free cell (i.e.a cell not containing an
obstacle, a wall or a fence) adjacent to the wall in the direction of the jump. Using the Cut action, P1 can
convert a cell containing a fence into a free cell. Note that once a cell containing a fence becomes free, P2 can
visit that cell.

Given the dynamics, we construct game and hypergame graphs. We define the game state (denoted by s)
and hypergame state (denoted by v) as follows:

s :
(
(p1.x, p1.y, p2.x, p2.y), (f1.cut, f2.cut), turn, q

)
v :

(
(p1.x, p1.y, p2.x, p2.y), (f1.cut, f2.cut), turn, q, gamma

)
where

• p1.x, p2.y, p1.x, p2.y represents the position of P1 and P2 in gridworld;

• f1.cut, f2.cut represents whether fence 1 and fence 2 (cells (0, 3) and (3, 3) in Fig. (4.4)) are cut or
intact;

• turn represents whether it is P1’s or P2’s turn at that state;

• q is the DFA state that encodes the progress P1 has made towards satisfying its scLTL objective;

• gamma is a subset of P1’s action set known to P2.

56

4.3 Case Study: Capture-the-Flag Game on Gridworld

Table 4.1: Comparison of deceptive and non-deceptive winning states under sure and almost-sure winning
condition for P1’s objective φ1 = ♢FLAG1 ∧ ♢FLAG2.

|V | |E| |F | |DASWin1| |DASWin1 ⇂S | ASWin2 VoD

SW(G) 6388 15016 1686 - 6133 255 -

DASW(H) 9423 22181 2238 9395 6370 18 0.9294

Table 4.2: Comparison of deceptive and non-deceptive winning states under sure and almost-sure winning
condition for P1’s objective φ2 = ((¬FLAG2 ∧ ¬collide)U a) ∧ (collide UFLAG2).

|V | |E| |F | |DASWin1| |DASWin1 ⇂S | ASWin2 VoD

SW(G) 4880 11449 1686 - 4724 156 -

DASW(H) 6965 16372 2238 6947 4868 12 0.9230

For simplicity, we use the following indices to represent different subsets of P1’s action sets. Hence, gamma
takes values from 0 to 3, with gamma = 3 representing the game in which P2 has complete information.

0 : N, E, S, W,

1 : N, E, S, W, Cut,

2 : N, E, S, W, JumpN, JumpE, JumpS, JumpW,

3 : N, E, S, W, JumpN, JumpE, JumpS, JumpW, Cut,

The game on graph G(Act1) is constructed using the product construction described in Ch. 2. The edges
of hypergame graph follow from Def. 4.2. A game or hypergame state is marked as a final state whenever q is
a final state in the DFA. Fig. (4.5) shows the DFAs corresponding to scLTL formulas in Eq. (4.3) and Eq. (4.4).
In the figure, the final states of DFA are shown with two concentric circles.

The result of applying Alg. 4.2.1 on the game and hypergame graph for objectiveφ1 = ♢FLAG1∧♢FLAG2

is tabulated in Table. 4.1 and that for objective φ2 = ((¬FLAG2 ∧ ¬collide)UFLAG1) ∧ (collide UFLAG2) is
tabulated in Table. 4.2.

However, under the deceptive almost-sure winning condition, we observe that P1 can win from 9395 out
of 9423 hypergame states. That is, P1 has a deceptive almost-sure winning strategy from 6370 out of 6388
game states, which is 6370− 6133 = 237 more states than the case when deception is not used. This results
in VoD = 0.9294. Similarly, for the second objective, where P1 has must capture flags in certain order and
ensure that certain safety constraints are also satisfied, we observe that P1 can win from 6947 out of 6965
hypergame states. That is, P1 has a deceptive almost-sure winning strategy from 4868 out of 4880 game states
which is 4868 − 4724 = 144 more states than the number of states when deceptive mechanism is not used,
thereby, resulting in VoD = 0.9230.

57

4.3 Case Study: Capture-the-Flag Game on Gridworld

58

Chapter 5

Synthesis with Misperception of Specifica-
tions

This chapter investigates the synthesis of deceptive winning strategies for the sub-class of games with in-
complete information where P2 misperceives P1’s true objective. We explore two approaches for analyzing
these games. In the first section, we focus on characterizing the state space and synthesizing strategies when
facing an ignorant or incapable P2, who does not update its perception during their interaction. In this set-
ting, P2 is assumed to know a partial objective of P1, which it regards as P1’s true objective. And, because of
its ignorance or incapability, P2’s perception of P1’s objective remains constant during their interaction. We
differentiate this case from situations where P1 deliberately prevents P2 from becoming aware of deception
by labeling the synthesized strategy as opportunistic, as it capitalizes on the opportunities arising from P2’s
ignorance or incapability.

In the second section, we consider an informed P2, who is aware of its misperception of P1’s objective
and maintains a hypothesis set regarding the possible objectives of P1. In addition, we equip P2 with an
inference mechanism, using which P2 updates its hypothesis by observing P1’s behavior in the game as well
as its counter-strategy.

5.1 Opportunistic Strategies in Games with Specification Misperception

5.1.1 Effect of Specification Misperception on Ignorant P2

Consider an interaction between P1 and P2 characterized by a deterministic two-player turn-based zero-sum
game, G = ⟨S,Act, T,AP ,L⟩, as defined in Def. 2.1. In this interaction, P1 aims to satisfy an scLTL formula
φ comprising of a public component φ1 and a private component φ2, i.e.φ := φ1 ∧φ2. The adversarial agent,
P2, only knows the public component φ1 and believes that P1’s aim is to satisfy φ1. Therefore, P2’s objective
is to prevent P1 from satisfying φ1. Formally, the information structure in the interaction is characterized by
the following assumption.

Assumption 5.1 (Information Structure). P1 knows her complete objective φ := φ1 ∧ φ2. P2 knows only the
public component of P1’s objective, φ1. The components S,Act,AP and L of the game arena G are commonly
known to both the players.

As a result of Assumption 5.1, the interaction between P1 and P2 is a game with incomplete information
about payoffs/specifications. Hence, P1 and P2 construct different games in their minds. Since P1 knows her
true objective, she constructs a perceptual game as the product G⊗A, where A is the DFA representing the
language of scLTL formula φ. On the other hand, P2 constructs his perceptual game as the product G⊗A1,
where A1 is the DFA representing the language of scLTL formula φ1.

59

5.1 Opportunistic Strategies in Games with Specification Misperception

Notation 5.1. Given an scLTL formula φ, let G(φ) denote the deterministic two-player turn-based game on a
graph in which P1’s objective is to satisfy φ.

Following the discussion in Sec. 2.3, the first-level hypergame representing the interaction between P1 and
P2 is given by H1 = ⟨G(φ), G(φ1)⟩. Since P1 is aware that φ2 is her private information, she is also aware
that P2 misperceives her true objective. Therefore, their interaction is, in fact, a second-level hypergame.

H2 = ⟨H1, G(φ1)⟩. (5.1)

Given the hypergame H2, we are interested to know whether P1 can exploit her superior knowledge to
gain advantage over P2? Specifically, we want to determine if there exists an opportunistic strategy for P1 that
exploits her superior knowledge to win from a state in G from which P1 cannot win using the standard sure
winning strategy1 as defined in Def. 2.3.

Problem 5.1. Given a game G and an objective φ = φ1∧φ2 for P1 following Assumption 5.1, determine the
set of states and the strategy using which P1 can satisfy φ1, φ2, φ with a high likelihood by exploiting her
superior knowledge about the private and public components of φ and P2’s misperception.

Problem 5.1 poses two challenges to decision making. The first challenge is to identify those states in which
P2’s subjectively rationalizable strategy is different from his rational strategy due to his misperception. From
these states, there is a possibility that P1 might have a strategy to exploit the difference to enforce a win from
an otherwise losing state. Secondly, it is possible that, from a state, either φ1 or φ2 is satisfiable but not both.
In such a situation, which sub-formula should P1 satisfy?

5.1.2 Static Hypergame on Graph

We begin by defining a graphical model of the hypergame H2 that incorporates the superior knowledge of
P1. Using this model, we can compute P2’s subjectively rationalizable strategy and use it to synthesize an
opportunistic strategy for P1.

To construct the graphical model of hypergame H2, observe that the language of φ is the same as the
intersection of languages of φ1 and φ2. Hence, a DFA that represents the union of languages of φ1 and
φ2 is sufficient to determine if a given word satisfies φ1, φ2 or φ. Let A1 = ⟨Q1,Σ, δ1, q10, F1⟩ and A2 =
⟨Q2,Σ, δ2, q20, F2⟩ be the DFA representing the languages of the scLTL formulas φ1, φ2. The DFA represent-
ing the language of φ is given by the intersection product of A1 and A2. We denote it by A = A1 ⊗ A2 =
⟨Q,Σ, δ, q0, F12⟩, where Q = Q×Q2, δ((q1, q2), σ) = (δ(q1, σ), δ(q2, σ)), q0 = (q10, q20) and F = F1 ×F2.

Definition 5.1 (Hypergame on a Graph). The hypergame on a graph representing the hypergame H2 of
Eq. (5.1) is a deterministic two-player turn-based game on a graph,

H = ⟨V,Act,∆, v0,F⟩

where

• V = S ×Q1 ×Q2 is the set of states;

• Act is the set of P1 and P2 actions;

• v0 ∈ V is an initial state;

• ∆ : (V1 × Act1) ∪ (V2 × Act2) → V is the deterministic transition function that maps a state v =
(s, q1, q2) and an action a ∈ Act to a state v′ = (s′, q′1, q

′
2) = ∆(v, a), where s′ = T (s, a), q′1 =

δ1(q1, L(s
′)) and q′2 = δ2(q2, L(s

′));
1The standard sure winning strategy is synthesized in the game G(φ) since it does not exploit P1’s superior knowledge.

60

5.1 Opportunistic Strategies in Games with Specification Misperception

• F = (S × F1 ×Q2) ∪ (S ×Q2 × F2) is the set of final states.

The final states F can be partitioned into three parts: (i) F1 = S ×F1× (Q2 \F2): the states that denote
satisfaction of φ1 but not φ2, (ii) F2 = S × (Q1 \ F1)× F2: the states that denote satisfaction of φ2 but not
φ1, and (iii) F12 = S × F1 × F2: the states that denote satisfaction of φ, that is, they satisfy φ1 and φ1. Note
that the sets F1,F2 and F12 are mutually exclusive and exhaustive.

5.1.3 Characterization of State Space

The following proposition establishes the equivalence between the sure winning strategies in the games
G(φ1), G(φ2), G(φ) and the hypergameH.

Proposition 5.1. The following statements hold.

1. There exists a sure winning strategy to visit F1 from a state (s, q1, q2) in the hypergame H if and only if
there exists a sure winning strategy to visit F1 from the state (s, q1) in the game G(φ1).

2. There exists a sure winning strategy to visit F2 from a state (s, q1, q2) in the hypergame H if and only if
there exists a sure winning strategy to visit F2 from the state (s, q2) in the game G(φ2).

3. There exists a sure winning strategy to visit F12 from a state (s, q1, q2) in the hypergameH if and only if
there exists a sure winning strategy to visit F from the state (s, q1, q2) in the game G(φ).

Since P2 is only aware of the public component φ1 of P1’s true objective φ, he would play an subjectively
rationalizable strategy to prevent the game from reaching the final statesF1∪F12 = S×F1×Q2 that denote
satisfaction of φ1. However, due to misperception, P2 is unaware that P1 may have a preference over visiting
the subset F12 over visiting F1. As a result, intentionally P2’s subjectively rationalizable strategy neither
prevents P1 from satisfying φ2 nor does it restrict P1 from satisfying her more preferred outcome. But could
it unintentionally prevent P2 from achieving φ2 or φ?

To see how P2’s unawareness affects the interaction, consider the partition of V induced by the sure
winning regions of the three sub-games: G(φ1), G(φ2) and G(φ). Since visiting any state in F1 ∪ F12

denotes satisfaction of φ1, by Proposition 5.1, SWin1(F1 ∪ F12) is the set of winning states in the game
G(φ1). Similarly, SWin1(F2 ∪ F12) is the set of winning states in the game G(φ2), and SWin1(F12) is the
set of winning states in the game G(φ). The containment relation among the sure winning regions follows
immediately.

Proposition 5.2. SWin1(F12) ⊆ SWin1(F1 ∪ F12) and SWin1(F12) ⊆ SWin1(F2 ∪ F12).

Since the deterministic two-player zero-sum games are determined (Proposition 2.1), the containment
relation between the sure winning regions of P2 follows from Proposition 5.2.

Corollary 5.1. SWin2(F12) ⊇ SWin2(F1 ∪ F12) and SWin2(F12) ⊇ SWin2(F2 ∪ F12).

Corollary 5.1 yields two key insights. The first insight, which solidifies our hypothesis, is that P2 can win
from a smaller number of states using his subjectively rationalizable rationalizable strategy than he could
if he had complete information about P1’s objective. The second insight is that P2 could unintentionally
prevent P1 from satisfying the private component of P1’s objective, φ2. This is because P2’s subjectively
rationalizable strategy prevents the game from reaching F1 ∪ F12, which includes a subset of final states,
F12, that denote satisfaction of φ2. For example, consider 3 states {v1, v2, v3} such that s1 is P2 state with
actions a1, a2, a3 that transitions the game to v1, v2, v3, respectively. Suppose that v2 ∈ F1 and v3 ∈ F12.
Then, P2’s subjectively rationalizable strategy is to choose a1 at state s1 since both actions a2, a3 will lead to
P1 satisfying φ1. Therefore, unintentionally P2 prevents the game from satisfying φ2 by marking action a3 to
be non-permissive.

We now characterize the state space of the hypergameH by labeling each state in V with a win-label.

61

5.1 Opportunistic Strategies in Games with Specification Misperception

Figure 5.1: State space characterization. Arrows indicate whether going from one partition to another could
be rational or not.

Definition 5.2 (Win-label). the win-labeling function λ : V → {0, 1}3 maps every state v ∈ V in the
hypergame H to an ordered 3-tuple denoting whether the state v is winning (1) or losing (0) for P1 in the
games G(φ1), G(φ2), and G(φ), respectively.

Intuitively, the win-label for a state v ∈ V captures the perception and knowledge of players about
whether they can win and whether their opponent can win from the state v . The first component of the
win-label captures what P2 thinks whereas the whole 3-tuple is known by P1 given her superior knowledge.
For example, if a state v ∈ V is winning for P1 in the game G(φ1) and the game G(φ2), but losing in the
game G(φ), then its win-label is λ(v) = {1, 1, 0}.

The win-labeling function can assign to every state v ∈ V , a unique label from 23 = 8 possible labels.
We analyze each possible label separately to understand which of the objectives φ1, φ2 or φ should P1 try to
satisfy from a state with a particular win-label.

Case I: (λ(v) = (0, 0, 0)) The state v is losing for P1 in the games G(φ1), G(φ2) and G(φ), i.e.P2 has an
subjectively rationalizable sure winning strategy that prevents P2 from satisfying φ1. Therefore, in this
case, P1 can try to satisfy only φ2, since she will not be able to satisfy either φ1 or φ.

Case II: (λ(v) = (0, 1, 0)) The state is losing for P1 in the games G(φ1) and G(φ), but winning in game over
φ2. That is, P2 has an subjectively rationalizable sure winning strategy that prevents P2 from satisfying
φ1. Therefore, in this case, P1 must satisfy only φ2. It cannot satisfy either φ1 or φ.

Case III: (λ(v) = (1, 0, 0)) The state is losing for P1 in the games G(φ2) and G(φ), but winning in game
over φ1. That is, P2 believes that it has lost the game. In this case, P1 is at least guaranteed to satisfy φ1.
But she may have an opportunity to satisfy either φ2 or φ since P2’s subjectively rationalizable strategy
does not intentionally prevent her from doing so.

Case IV: (λ(v) = (1, 1, 0)) The state is winning for P1 in the games G(φ1) and G(φ2), but losing in game
G(φ). That is, P2 believes that it has lost the game. This case presents an interesting decision problem
where P1 has to choose between satisfying φ1 or φ2 since it does not have a sure winning strategy to
satisfy both. However, there may be an opportunity to satisfy φ.

Case V: (λ(v) = (1, 1, 1)) This is a trivial case, in which P1 can satisfy φ by following the standard sure
winning strategy. That is, P1 satisfies φ regardless of the strategy and perception of P2.

62

5.1 Opportunistic Strategies in Games with Specification Misperception

Cases VI-VIII: (λ(v) = (0, 0, 1), (0, 1, 1), or (1, 0, 1)) These cases are not possible, because P1 must be
winning in both the specifications, φ1 and φ2, to be winning in φ [76, Lma. 1].

5.1.4 Synthesis of Opportunistic Strategy

P2’s subjectively rationalizable strategy. Since P2’s aim is to prevent P1 from satisfying φ1, P2’s sub-
jectively rationalizable strategy is a permissive strategy in his perceptual game. Conventionally, a permissive
strategy is only defined at the winning states of a player. However, in many real-life situations, the interac-
tion between the players does not terminate even if the state is sure losing for a player. Hence, without loss
of generality, we assume that a player chooses every available action with a strictly positive probability at a
losing state.

Therefore, P2’s randomized subjectively rationalizable strategy at a state v ∈ V is a probability distribu-
tion over the set M(v) defined as follows:

M(v) =

{
{a ∈ Act2 | ∆(v, a) ∈ SWin2(F1 ∪ F12)} if λ(v) = (0, ·, ·)
Act2 otherwise

P1’s opportunistic strategy. By knowing P2’s subjectively rationalizable strategy in the hypergame H,
P1 can compute her randomized opportunistic strategy. Intuitively, from a state v ∈ V , we expect an oppor-
tunistic strategy to yield at least as much payoff as the sure winning strategy. If possible, it should yield a
higher payoff than P1’s sure winning strategy π12 in G(φ).

To formalize this idea, we define payoffs r1, r2, r12 ∈ R+ that P1 receives for satisfying φ1, φ2, φ, respec-
tively. We assert the condition that r12 ≥ r1+r2 to capture that satisfying φ is strictly preferred to satisfying
either φ1 or φ2 individually. Given that the interaction is zero-sum, P2 receives the payoff −r1 if P1 satisfies
φ1 and a payoff r1 otherwise. Owing to misperception, P2 incorrectly thinks his payoff when P1 satisfies
φ2 ∧ ¬φ1 is also r1.

The relation between r1 and r2 quantifies the preference of P1 to satisfy φ1 and φ2. When r1 = r2, then
P1 is considered to be indifferent to satisfying either φ1 or φ2. Otherwise, if r1 > r2, then φ1 is strictly
preferred over φ2, and vice versa.

As a result, the problem of synthesizing an opportunistic strategy is reduced to maximizing the payoff in
the following MDP constructed by marginalizing the two player game with P2’s randomized strategy µ.

Definition 5.3 (Hypergame MDP). Given the hypergame on graphH = ⟨V,Act,∆,F⟩ and P2’s subjectively
rationalizable strategy µ given his perception, the opportunistic planning reduces to an MDP, defined by

Hµ = ⟨V1 ∪ {sink12, sink1, sink2}, Act1 ∪ {stop}, P,R⟩,

where V1 = (S1 × Q1 × Q2) is a set of states where P1 chooses an action. The states sink12 and sink1 are
speial absorbing states which denote that P1 will thereafter follow the respective sure winning strategy in the
games G(φ) and G(φ1). The probabilistic transition function P and the payoff function R are defined based
on the win-label of a state v ∈ V1 as follows,

• λ(v) ∈ (0, 0, 0): All feasible actions of P1 are enabled at v. The special action stop is not enabled. Given
an action a1 ∈ Act1, the transition probability function is given by

P (v′ | v, a1) =
∑

a2∈Act2

1{v′}(∆(∆(v, a1), a2))) · µ(v)(a2).

• λ(v) ∈ (1, 0, 0): Only actions that have zero probability of reaching a state with win-label (0, 0, 0)
are enabled. In other words, P1 is guaranteed to remain within the winning region SWin1(F1 ∪ F12).

63

5.1 Opportunistic Strategies in Games with Specification Misperception

Therefore, φ1 will at least be satisfied. The special action stop is enabled. Given an action a1 ∈ Act1,
the transition probability function is given by

P (v′ | v, a1) =
∑

a2∈Act2

1{v′}(∆(∆(v, a1), a2))) · µ(v)(a2).

For action stop, the game transitions to the absorbing state sink1 with probability one, i.e.

P (sink1 | v, stop) = 1.

after which P1 must switch to its winning strategy in G(φ1). The payoff for reaching the absorbing
state sink1 is defined as R(sink1) = r1.

• λ(v) ∈ (0, 1, 0): Only the special action stop is enabled. Using this action, the game transitions to the
absorbing state sink2 with probability one, i.e.

P (sink2 | v, stop) = 1.

The payoff for reaching the absorbing state sink2 is defined as R(sink2) = r2.

• λ(v) ∈ (1, 1, 1): Only the special action stop is enabled. Using this action, the game transitions to the
absorbing state sink12 with probability one, i.e.

P (sink12 | v, stop) = 1.

The payoff for reaching the absorbing state sink2 is defined as R(sink2) = r2.

• λ(v) ∈ (1, 1, 0): Any action that does not lead into partition (0, 0, 0) is enabled. The special action stop
is also enabled. Given an action a1 ∈ Act1, the transition probability function is given by

P (v′ | v, a1) =
∑

a2∈Act2

1{v′}(∆(∆(v, a1), a2))) · µ(v)(a2).

For the action stop, P1 transitions to the absorbing state sink1 if r1 ≥ r2 and to sink2 otherwise. The
payoff received by P1 on reaching the absorbing state sink1 is R(sink1) = r1 and on reaching the
absorbing state sink2 is R(sink2) = r2.

The optimal opportunistic strategy π for P1 is the one that solves

max
π

E

[
T∑
t=1

R(vt)

]
, (5.2)

where T is the first time when an absorbing state is reached. The rationale behind defining absorbing states is
to provide P1 with a mechanism to decide whether it wants to explore the state space to find an opportunity
or settle for a sub-optimal payoff by satisfying a sub-specification. We define the set of states {v ∈ V | λ(v) ∈
{(0, 1, 0), (1, 1, 1)}} ∪ {sink1, sink12} as absorbing in the hypergame MDP,Hµ.
Theorem 5.2. There may exist an opportunistic strategy, which satisfies Eq. (5.2), using which P1 can satisfy φ
from a state v ∈ V \ SWin1(F12).

Intuitively, Thm. 5.2 proves our hypothesis that P1 may have a strategy that leverages P2’s misperception
to satisfy φ from a state that is sure-losing for P1 to satisfy φ, if P2 knew P1’s true objective. Naturally, the
opportunistic strategy need not exist from all sure-losing states. The following theorem establishes that the
time and space complexity of computing an opportunistic strategy is the same as that of reactive synthesis.
Theorem 5.3. The time and space required to synthesize an opportunistic strategy scales linearly with the size
of hypergameH.

It is also noted that the opportunistic synthesis computes a strategy to satisfy φ,φ1, and φ2 in order of
preference given by the reward function.

64

5.1 Opportunistic Strategies in Games with Specification Misperception

Figure 5.2: Game arena.

5.1.5 Case Study: Robot Motion Planning

We illustrate our approach using a gridworld example as shown in Fig. (5.2). P1 (blue agent) is controllable,
whereas P2 (red agent) is the adversary. P1’s objective is to visit two regions, A (green cell) and B, while
avoiding obstacles O (black cells). P2’s objective is to prevent R2D2 from completing her task. However, P2
only knows that P1 wants to visit A. He is unaware that P1’s objective includes visiting B as well. Hence,
letting φ1 = ¬O U A and φ2 = ¬O U B, the objective of P1 is φ = φ1 ∧ φ2, whereas P2’s objective is to
prevent P1 from satisfying φ1. This defines the information asymmetry in the interaction. The action sets of
P1 and P2 are as follows:

Act1 = {N, S, E, 1, NE, N1, SE, SW},
Act2 = {N, S, E, 1, STAY},

where N, E, ..., SW denote the standard actions to move in 8-neighborhood in a gridworld. The action
STAY allows P2 to remain in the same cell.

Given the 20 obstacle-free cells of gridworld in Fig. (6.2) and the action sets, we construct the transition
system with 20× 20× 2 = 800 states. The automaton equivalent to ¬O U X for X = A,B is shown in the
Fig. (5.3). We prune unsafe actions that result in P1 to visiting an obstacle and thus exclude the transitions
labeled O and the state 2 in computing the transition system. Therefore, the hypergameH has 800× 2× 2 =
3200 states, where we keep track of both sub-specification using two automata. Consequently, each sub-game,
G(φ1) and G(φ2), has 800 × 2 × 1 = 1600 final states and the game G(φ) has 800 final states. Applying
Alg. 2.1.1 for each of the three games generates the winning regions with sizes: |SWin1(F1 ∪ F12)| = 2491,
|SWin1(F2 ∪ F12)| = 2527, and |SWin1(F12)| = 1831.

Given the three winning regions, we first validate that the state-space is indeed partitioned in five regions
as discussed in Sec. 5.1.3. For every state in the H, we assign a win-label to it by determining the winning
regions in which the state appears. The result is tabulated in 5.1. We observe that the state-space is partitioned
into exactly five regions.

Using the five partitions, we construct the hypergame MDP as defined in Def. 5.3. We define the ran-
domized strategies for P1 as follows: for every state with win-label of (0, ·, ·), we assume µ to be a uniform
distribution over all safe actions; i.e. the actions that, with probability one, lead to a state with a win-label of
type (0, ·, ·). We define µ by assigning an arbitrary distribution over all feasible actions from a state within

65

5.1 Opportunistic Strategies in Games with Specification Misperception

1start

2

0
X

¬(X ∨O)

O

⊤

⊤

Figure 5.3: The automaton for ¬O U X , where X ∈ {A,B}.

Table 5.1: Partition of game state-space due to information asymmetry.

Partition Number of States
(1, 1, 1) 1831
(1, 1, 0) 181
(1, 0, 0) 479
(0, 1, 0) 515
(0, 0, 0) 194
(1, 0, 1) 0
(0, 1, 1) 0
(0, 0, 1) 0

partitions (1, ·, ·). Given the hypergame MDP states and P2’s strategy µ, the transition probabilities are de-
termined based on win-label of the state and the corresponding expression for P (v′ | v, a) is provided in
Def. 5.3. We compute the value function and opportunistic strategy using the value iteration algorithm [89].

Next, we illustrate the decision process in the hypergame MDP. Let the initial configuration be such that
P1 is at the cell (0, 2), and P2 is at (4, 2) as shown in Fig. (6.2). Therefore, the initial state in the hypergame
MDP is v0 = (((0, 2), (4, 2), 0), 1, 1). We define the payoff for visiting A as r1 = 200 and that of visiting B
as r2 = 100. With this initial configuration we simulate the interaction between P1 and P2, where P1 uses
the opportunistic strategy π and P2 uses the strategy µ. We run the simulation for 100 times. We highlight a
part of one of the runs obtained from simulation.

v0 = (((0, 2), (4, 2), 0), 1, 1) with λ(v0) = (1, 0, 0)

v1 = (((0, 3), (3, 2), 0), 0, 1) with λ(v1) = (1, 0, 0)

v2 = (((1, 2), (2, 2), 0), 0, 1) with λ(v2) = (1, 1, 1)

Table. 5.2 provides an insight into P1’s decision process. It shows the enabled actions, possible next states
and their respective partitions, the probability of reaching those states and the value of those states. Based

Table 5.2: A decision table for state (((0, 2), (4, 2), 0), 1, 1) with value 285.03 and strategy to choose action N.

Act Next State Partition Prob Value

N
(((0, 3), (4, 2), 0), 0, 1) (1, 0, 0) 0.03 288.99
(((0, 3), (3, 2), 0), 0, 1) (1, 0, 0) 0.36 290.20
(((0, 3), (4, 1), 0), 0, 1) (1, 1, 1) 0.61 288.99

E
(((1, 2), (4, 1), 0), 0, 1) (1, 1, 0) 0.25 0
(((1, 2), (3, 2), 0), 1, 1) (1, 0, 0) 0.73 297.41
(((1, 2), (4, 2), 0), 1, 1) (1, 1, 0) 0.02 0

NE
(((1, 3), (3, 2), 0), 1, 1) (1, 0, 0) 0.38 259.42
(((1, 3), (4, 2), 0), 1, 1) (1, 1, 0) 0.18 285.03
(((1, 3), (4, 1), 0), 1, 1) (1, 1, 0) 0.44 299.25

66

5.2 Deceptive Strategies under Specification Misperception

on the value iteration, the value of initial state v0 is 285.03, while the optimal strategy is to select action N,
which has a high likelihood to reach a (1, 1, 1) state. Note that by choosing action E, if P1 reaches a state with
value 0, then it chooses to settle for sub-optimal payoff of r1 = 200 by satisfying only φ1. Hence, the action
N is preferred over E. A similar argument can be given for the action NE.

We now point out the key advantage of the opportunistic synthesis over reactive synthesis as highlighted
in Thm. 5.2. Observe that the initial state is losing in the game G(φ) for P1. Therefore, if P1 uses reactive
synthesis approach, it will give up instantaneously and get no payoff. On the contrary, with opportunistic
synthesis, P1 could leverage the misperception of P2 to start from a losing state in G(φ) and satisfy φ.

We highlight that the construction of hypergame MDP is such that P1 behaves rationally and tries to
maximize the payoff. Given the initial state in partition (1, 0, 0), it could have chosen the stop action and
switched to the winning strategy in G(φ1) to get a payoff of r1 = 200. Instead, P1 continues to explore to
find an opportunity to get a payoff of r = r1 + r2 = 300.

We conclude this section by counting the number of states with opportunities. This is done by counting
the number of hypergame MDP states with non-zero value. Recall that we label the absorbing states in the
hypergame MDP as absorbing with a fixed payoff. Therefore, they always have fixed value of one. We find
that there are a total of 1245 absorbing states and 312 states with opportunities. This implies that out of 1600
total states, there are 1600− (1245 + 312) = 43 states with no opportunities. In other words, not all losing
states of P1 in the reactive game G(φ) have opportunities.

5.2 Deceptive Strategies under Specification Misperception

5.2.1 Effect of Specification Misperception on Informed P2

In this section, we consider the case when P2 has incomplete information about P1’s temporal logic objective
and is aware of it. We introduce a hypothesis space for P2, denoted by X . The set X can be discrete and finite.
The set X can be a finite set of scLTL formulas that P2 believes that P1’s true objective is one of these. The
hypothesis space X can also be continuous. For example, each x ∈ X is a distribution over a subset of scLTL
formulas Φ so that x(φ) is the probability that P2 believes φ ∈ Φ to be P1’s true objective. For the time
being, we do not restrict the set X . In practice, a hypothesis space can be constructed from observations of
any previous interactions or from the threat modeling [90] given P2’s understanding of their interaction and
potential objectives of an adversary.

Assumption 5.2 (Information Structure). The asymmetrical information between players is introduced as fol-
lows:

• P1’s objective is φ1.

• P2 does not know φ1 but has an initial hypothesis x0 and a hypothesis space X about P1’s objective.

The assumption describes scenarios commonly encountered in practice for both cooperative and adver-
sarial interactions. For example, in a contested search and rescue mission, a search team has a sequence of
waypoints that need to be visited according to a temporal order. The opponent may know the set of way-
points but is unclear about the team’s temporal objective. The problem we aim to solve is stated informally
as follows.

Problem 5.2. Given an adversarial encounter between P1 and P2 under information asymmetry as defined
by Assumption 5.2, how to compute a strategy for P1 that maximizes the probability of satisfying φ1 while a
rational P2 responds optimally given P2’s knowledge of the game?

Next, we introduce the modeling framework of hypergames and present a solution concept for a class of
hypergames to solve P1’s strategy.

67

5.2 Deceptive Strategies under Specification Misperception

5.2.2 Dynamic Hypergame on Graph

To characterize P2’s evolving perceptual game, we introduce an inference function.

Definition 5.4 (Inference). Assuming P2 has complete observation on the game plays, a perfect recall infer-
ence function η : X×PrefPaths→ X maps a hypothesis x ∈ X and an observation (a history) h ∈ PrefPaths
to a new hypothesis x′ = η(x, h) ∈ X .

Anticipating that P2 will respond with evolving hypothesis, P1 must calculate its moves to steer P2’s
inferred hypothesis and the resulting strategy. For the time being, we assume that P1 knows P2’s inference
mechanism and initial hypothesis, and study how P1 can exploit P2’s incomplete knowledge and inference
mechanism for strategic advantage.

We introduce a transition system of P1’s level-1 hypergame to simultaneously capture the changes in game
states given players’ actions and the evolving perceptual game of P2.

Definition 5.5 (Transition System of P1’s Level-1 Hypergame). Given the transition systemTS = ⟨S,A, P, s0,AP, L⟩,
the DFA A = ⟨Q,Σ, δ, ι, F ⟩ that corresponds to P1’s scLTL specification φ1, and P2’s hypothesis space X ,
the transition system of P1’s level-1 hypergame is a tuple

H = ⟨V,A,∆, (s0, h0, q0, x0),F⟩,

where the components of hypergame transition system are defined as follows.

• V = S×PrefPaths×Q×X is the set of states. Every state v = (s, h, q, x) ∈ V has four components:

– s is the state.
– h ∈ PrefPaths is a history terminating in state s ∈ S.
– q ∈ Q is the automaton state for keeping track of P1’s progress towards satisfying φ1.
– x ∈ X represents the hypothesis of P2 given the history h.

• A is the set of joint actions.

• ∆: V ×A→ DV is a probabilistic transition function defined as follows. Consider v = (s, h, q, x) and
v′ = (s′, has′, q′, x′), where has′ is the history h appended with the new action a and state s′,

∆(v′ | v, a) =P (s′ | s, a)1(δ(q, L(s′)) = q′)

· 1(η(x, has′) = x′),

where 1(E) is the indicator function that returns 1 if the statement E is true, and 0 otherwise.

• (s0, h0, q0, x0) is the initial state that includes the initial state in the transition system TS, the current
history that consists of the initial state only, i.e., h0 = s0, q0 = δ(ι, L(s0)), and P2’s initial hypothesis
x0.

• F = S × PrefPaths× F ×X is the set of final states for P1.

The transition function is understood as follows: Given a history h ending in the current state s and a
joint action a ∈ A, the probability of reaching the next state s′ is determined by P (s′ | s, a) in the transition
system. Upon reaching s′, P2 updates its hypothesis to x′ = η(x, has′) (here we assume the entire history
is used for this update). Also, the transition in the specification automaton is triggered to reach state q′ from
state q given the label of the new state s′.

It is observed that the hypergame transition system in Def. 5.5 captures the dynamic evolution of P2’s
viewpoint. The history has time indices implicitly encoded. For example, a history s0a0s1a1 . . . st is a history
up to time step t.

Given P2’s perceptual game evolving given the history and the inference function, P2 employs a Behav-
iorally Subjectively Rationalizable (BSR) strategy, defined as follows.

68

5.2 Deceptive Strategies under Specification Misperception

Definition 5.6 (Behaviorally Subjectively Rationalizable Strategy). A strategy πB,2
2 : PrefPaths → DA2 is

behaviorally subjectively rationalizable for P2 if

πB,2
2 (h) = π∗,x,2

2 (h),

where x = η(x0, h), and π∗,x,2
2 : PrefPaths → DA2 is a subjectively rationalizable strategy for P2 in the

hypergame H2(x).

Intuitively, playing a BSR strategy means that for any history h, P2 plays the subjectively rationalizable
strategy corresponding to its hypothesis constructed from the history h and its initial hypothesis. It is noted
that the BSR strategy for P2 always exists in the class of hypergames studied herein. In [42], the author states
the condition for the existence of the subjectively rationalizable strategy as follows: P1 never excludes an
action from P2’s action set in P1’s own perceptual game, where P1 thinks in P2’s perceptual game P2 believes
this action is rationalizable [91] to P2. In the class of hypergames considered, P2’s subjectively rationalizable
strategy exists as P2’s perceptual game is a zero-sum game.

When X is finite, the hypergame transition system has a countably infinite set of states. This is because a
history can be of a finite but unbounded length. The entire history is maintained as a part of the state due to
the general definition of the inference mechanism. In the next section, we show for some special cases of the
interactions, a state aggregation can be performed in the hypergame transition system to reduce the infinite
state space to a finite state space.

5.2.3 Synthesis of Deceptive Strategy

Given that P2 uses a BSR strategy, P1 can play deceptively by influencing P2’s hypothesis so that P2’s actions
given P2’s hypothesis can be advantageous for P1. To make P1’s planning problem tractable, we introduce
inference-equivalent histories so as to aggregate the countably infinite states of the transition system H of
P1’s level-1 hypergame into a finite state set.

Definition 5.7 (Inference-equivalent Histories). Given an inference function η : X × PrefPaths → X and
a hypothesis x, two histories h1 and h2 are said to be (η, x)-equivalent if η(x, h1) = η(x, h2) and for any
h′ ∈ (A × S)+, η(x, h1h′) = η(x, h2h

′). The set of histories equivalent to h ∈ PrefPaths given hypothesis
x is denoted by [[h]]x. If the equivalence between histories can be defined to be independent of the current
hypothesis, that is, for any pair of hypotheses x, x′ ∈ X , if h1, h2 are (η, x)-equivalent, then h1, h2 are
also (η, x′)-equivalent, then we say that the two histories h1 and h2 are η-equivalent. The set of histories
η-equivalent to h ∈ PrefPaths is denoted by [[h]].

We consider a subset of dynamic hypergames which satisfy the following assumption.

Assumption 5.3. 1. The hypothesis space X is discrete and finite.

2. The inference function η has a finite domain. That is, the set of histories are grouped into a finite set of
inference-equivalent classes (see Def. 5.7).

3. For anyx ∈ X , P2 selects a quantal response strategy in the zero-sum gameG(x)with a response parameter
known to P12.

4. For any x ∈ X , P2’s strategy in game G(x) is memoryless.

2At each state, the quantal response strategy selects an action that is proportional to the exponential of λ-times the expected
future payoffs from that state given the chosen action. The parameter λ is called the response parameter [92].

69

5.2 Deceptive Strategies under Specification Misperception

Assumption 5.3-1) and 5.3-2) ensure the planning state space in H can be aggregated into a finite set.
Assumption 5.3-3) enables us to only need to consider one SR strategy for P2 in game G(x), for each x ∈ X .
It is noted that if P2 takes the deterministic SR strategy instead of the quantal response, there may be multiple
strategies. There are two possible approaches to deal with multiple equilibra. The first one is that P1 must
learn from online interaction about which SR strategy is employed by P2 and adapt P1’s deceptive strategy.
However, this adaptive deception requires further study of online optimization and regret analysis. The second
one is that the deceptive planning algorithm should be robust for a range of possible equilibria strategies used
by P2. Adaptive and robust deceptive planning are future extensions for this work.

Next, we formally state the deceptive planning problem for a subclass of dynamic hypergames.

Problem 5.3. Given Assumptions 5.2 and 5.3, compute the optimal deceptive strategy for P1 in the dynamic
hypergameH, provided that P2 follows a BSR strategy.

We leverage the hierarchy of reasoning in level-2 hypergames and develop a two-step approach: Firstly,
we construct P2’s BSR strategy according to Def. 5.6: for each x ∈ X , we solve P2’s subjectively rationaliz-
able strategy π∗,x,2

2 in the static hypergame H2(x). P2’s BSR strategy is computed from the set of subjectively
rationalizable strategies given P2’s evolving hypothesis (see Def. 5.6). Secondly, we incorporate P2’s BSR
strategies into the transition system in Def. 5.5 to reduce P1’s planning problem into an MDP with a reacha-
bility objective, stated next.

Definition 5.8. Under Assumption 5.3, the dynamic hypergame H = ⟨V,A,∆, (s0, h0, q0, x0),F⟩ reduces
to a finite-state MDP with a reachability objective for P1,

H̃ = ⟨Ṽ , A1, ∆̃, (s0, [[h0]]x0 , q0, x0), F̃⟩,

where

• Ṽ is a finite and discrete set of states. Each state ṽ = (s, [[h]]x, q, x) consists of a state s, an inference-
equivalent class given the (η, x)-equivalent relation, a state q in the DFA, and a hypothesis x of P2.

• ∆̃ : Ṽ ×A1 → D(Ṽ) is defined as follows: For any state ṽ = (s, [[h]]x, q, x), if q = qsink — the sink state
in the DFA A, then state ṽ is a sink state.
Given ṽ1 = (s1, [[h1]]x1 , q1, x1)with q1 ̸= qsink, a1 ∈ A1, and ṽ2 = (s2, [[h2]]x2 , q2, x2) andh1(a1, a2)s2 ∈
[[h2]]x2 , then

∆̃(ṽ2 | ṽ1, a1) =
∑

a2∈A2

π∗,x1,2
2 (a2 | s1)

· P (s2 | s1, (a1, a2))1(δ(q1, L(s2)) = q2).

where π∗,x1,2
2 (a2 | s1) is the probability of P2 selecting action a2 given its current hypothesis x1 and

the current state s1. That is, P2 uses a BSR strategy.

• (s0, [[h0]]x0 , q0, x0) ∈ Ṽ is the initial state, given (s0, h0, q0, x0) is the initial state in the transition
systemH.

• F̃ = {(s, [[h]]x, q, x) ∈ Ṽ | q ∈ F} is the set of final states for P1, where F is the set of final states of
DFA A. P1’s goal is to maximize the probability of reaching F̃ .

By construction, if a path ρ in the MDP visits F̃ , then P1 satisfies the scLTL formula φ1. Thus, maximizing
the probability of satisfying P1’s specification is equivalent to maximizing the probability of reaching the set
F̃ . The optimal policy for P1 in H̃ is deceptive because by optimally planning in this MDP, P1 will select
actions to influence P2’s belief so that P2 takes actions that are advantageous for P1 to achieve its goal. We can

70

5.2 Deceptive Strategies under Specification Misperception

Algorithm 5.2.1: Computation of P1’s subjectively rationalizable strategy.
1 Construct P1’s level-1 hypergameH with TS, A, X , and η;
2 for x ∈ X do
3 Compute P2’s SR strategy π∗,x,2

2 from game G(x);

4 Construct H̃ with {π∗,x,2
2 | x ∈ X} andH;

5 π̃∗
1,V ← Solve MDP H̃;

6 return π̃∗
1 ;

employ dynamic programming to solve the optimal value function V : Ṽ → R which satisfies the Bellman
optimality condition:

V(ṽ) = max
a∈A1

∑
ṽ′∈Ṽ

∆̃(ṽ′ | ṽ, a)V(ṽ′), ∀ṽ ̸∈ F̃ , (5.3)

and
V(ṽ) = 1,∀ṽ ∈ F̃ .

where {V(ṽ) | ṽ ∈ Ṽ } is the set of decision variables. The optimal policy π̃∗
1 is computed from the optimal

value function:
π̃∗
1(ṽ) = argmax

a∈A1

∑
ṽ′∈Ṽ

∆̃(ṽ′ | ṽ, a)V(ṽ′), ∀ṽ ̸∈ F̃ .

The time complexity for solving MDPs with reachability objectives is polynomial in the size of state space
and action space. Here, the size of state space in the MDP is O(|S| ×N × |Q| × |X|), where N is the number
of (η, x)-equivalent classes of histories in the game. The size of the action space in the MDP is |A1|. Besides
using dynamic programming, an MDP with a reachability objective can be solved using probabilistic model
checking algorithms ([77, Chapter 10.1.1], [93]) and existing PRISM toolbox [94].

Remark 5.1. Given the problem can be of large scale, approximate dynamic programming (ADP) solutions of
MDP can be used to reduce the number of decision variables [95]. For example, value function approximation
in ADP uses a function approximator (such as a neural network) to approximate the value function, where
the decision variables are coefficients of the value function. In the problem of large scale, it is often the case
that the number of coefficients of the value function approximator is much smaller than the number of states.

To this end, we include Alg. 5.2.1 to describe how to compute P1’s subjectively rationalizable strategy in
the dynamic hypergames with temporal logic objectives.

Theorem 5.4. Assuming P1’s knowledge about η is correct, the optimal strategy π̃∗
1 : Ṽ → DA1 in the MDP H̃

is P1’s subjectively rationalizable strategy in the dynamic hypergame given P2’s evolving knowledge.

Proof. The construction of H̃ is achieved through marginalizing out P2’s actions given that P2 follows the
BSR strategy in the dynamic hypergameH. Thus, optimal planning in H̃ computes the best response strategy
for P1 against P2’s BSR strategy. Any deviation from this best response strategy will not gain P1 a better
outcome.

Remark 5.2. Assumption 5.3-4) is not necessary. If P2’s SR strategy π∗,x,2
2 is not memoryless in the game

G(x) but represented using a finite-state controller (also known as a finite-memory policy), then we can
augment the states in the hypergame transition system in Def. 5.5 with the states in the finite-state controller
and planning in the augmented state space.

71

5.2 Deceptive Strategies under Specification Misperception

Definition 5.9 (Value of Deceit). Given the dynamic hypergameH = ⟨V,A,∆, (s0, h0, q0, x0),F⟩, the value
of deceit is defined by

VoD =
PrH̃,π̃∗

1 (s0h
′ |= φ1)

u1(s0, π∗
1, π

∗
2, φ1)

,

where PrH̃,π̃∗
1 (s0h

′ |= φ1) is the probability of satisfying the given P1’s task φ1 in the Markov chain induced
from H̃ under the optimal policy π̃∗

1 , and u1(s0, π
∗
1, π

∗
2, φ1) is the value of the zero-sum game with complete

information given P1’s task φ1.

Note that we have PrH̃,π̃∗
1 (s0h

′ |= φ1) = V(s0, [[h0]]x0 , q0, x0). In words, the value of deceit is the ratio
between P1’s probability of satisfying the scLTL objective using the solution of the dynamic hypergame and
P1’s probability of satisfying the same objective when both players have complete information. Based on the
definition, P1 will only gain advantage with deception when the value of deceit is greater than one.

5.2.4 Case study: Robot Motion Planning

In this section, we present a robot motion planning example to illustrate the proposed deceptive planning
method. This case study includes an inference function for P2 based on the sliding-window change detection,
introduced next.

Inference with Sliding-Window Change Detection

We introduce a class of inference algorithms based on change detection in Markov chain (MC) [96]. Given
P2’s finite hypothesis space X , P2 can construct a set of games {G(x) | x ∈ X}. For each game G(x), it is
assumed that there is a unique equilibrium ⟨π∗,x

1 , π∗,x
2 ⟩, where π∗,x

i : PrefPaths → DAi is a mixed strategy
for player i given the hypothesis x. This equilibrium induces a probability measure Pr⟨π

∗,x
1 ,π∗,x

2 ⟩ over histories
in G(x). For simplicity in notation, we denote Pr⟨π

∗,x
1 ,π∗,x

2 ⟩ as Prx.
When P2’s current hypothesis is x, P2 can detect a change from x to some x′ ∈ X using a sliding-window

change detection algorithm based on the Cumulative SUM (CUSUM) statistic [97]. First, we are given a data
point in forms of history h = s0a0s1 . . . sn and a nominal model x0. We denote the interval of a time
window of size m+ 1 as [k, k +m], and the history within this time window is skak . . . sk+mak+msk+m+1.
Second, we denote the i-th observation of the transitions within the time window as yi = (ak+i−1, sk+i) for
1 ≤ i ≤ m + 1. When i = 0, the 0-th observation within the window is y0 = (sk). Intuitively, given a
data and a nominal model x0, the sliding-window change detection algorithm uses a subsequence of history
over a time window and detects if a change has occurred in the model that generates the data during this
time window. Specifically, for each hypothesis x ∈ X and a nominal model x0, the algorithm computes the
log-likelihood ratio, for 1 ≤ j ≤ m+ 1,

Rx
j =

j∑
i=0

rxi ,

where rxi = ln Prx(yi)
Prx0 (yi)

, and Prx(yi) (resp. Prx0(yi)) is the probability of observing the transition given the
probability measure Prx (resp. Prx0).

The change detection lies in the difference between the log-likelihood ratio and its current minimum value.
The CUSUM score is given by,

Zx
l = Rx

l − min
1≤j≤l

Rx
j , for 1 ≤ l ≤ m+ 1.

72

5.2 Deceptive Strategies under Specification Misperception

(a) (b) (c)

Figure 5.4: (a): world1’s initial configuration for P1 and P2. (b): world2’s initial configuration for P1 and P2.
Cells colored in yellow are walls. Bulbs indicate initial P2’s predictions. (c): Robot’s dynamics when action
“up” is taken.

Recursively, the CUSUM score is updated for each hypothesis x ∈ X as

Zx
l = max{0, Zx

l−1 + ln
Prx(yl)

Prx0(yl)
}, (5.4)

where Zx
0 = 0.

A change is detected at time twhen the score of at least one model, sayZx
l , exceeds a user-defined constant

threshold c > 0. Formally, the time of change is given by

t = min{l | ∃x ∈ X, Zx
l ≥ c}.

Once a change is detected, the algorithm sets the nominal model to be the current predicted model, disregards
the history until the change, and keeps running the online change detection given new observations from the
change point onwards. In the case when multiple models maintain similar CUSUM scores, we select one
model based on some domain-specific heuristics or at uniformly random.

Lemma 5.1. Given a sliding-window change detection inference η : X × PrefPaths → X with window size
m+ 1 and a finite hypothesis space X , two histories h1, h2 are (η, x)-equivalent if they share the same suffix 3

of lengthm+ 1.

Proof. The proof is based on the property of the change detection and thus omitted.

Deceptive Planning with a Temporal Logic Objective

We consider two examples inspired by security games, referred to world1 (Fig. (5.4a)) and world2 (Fig. (5.4b)).
In both worlds, a robot (P1) is to visit several regions of interest (labeled A,B,C and colored in red) according
to a temporal ordering, and an observer (P2) can reallocate traps in cells colored in blue. Both games are
concurrent: When P1 selects an action to move, P2 simultaneously chooses an action to reallocate the traps.
When P1 enters the cell where P2 allocates the trap to that cell, we say that P1 is trapped. The game terminates
in two ways: a) P1 is trapped; b) P1 completes its task.

Formally, we describe P1’s task by the formula as follows:

φ1 = (¬obsUA) ∧ (¬(B ∨ obs)UC).

73

5.2 Deceptive Strategies under Specification Misperception

q0start

q1q2

q3q4⊤

obs ∨B

A C

obs

A

B ∨ C

obs ∨B

A

C

⊤

Figure 5.5: The task automaton with 5 states and 12 edges corresponds to φ1, where Q = {qi | i =
0, 1, 2, 3, 4}.

That is, the robot needs to visit A and C without reaching obstacles. Before visiting C , the robot cannot visit
B. The corresponding DFA is drawn in Fig. (5.5).

P1 can move in four compass directions, and P1’s dynamics is plotted in Fig. (5.4c). The grid world is
surrounded by a bouncing wall, i.e., if P1 hits the wall, then P1 gets bounced back to P1’s previous cell. The
orange cell in the grid world is a static obstacle, labeled by obs.

P2 can reallocate the traps (i.e., dynamic obstacles) to a subset of cells colored in blue in world1 and
world2. P2 can only use ℓ traps with n possible trap locations. Thus, the number of actions for P2 is

(
n
ℓ

)
, i.e.,

choose ℓ out of n. Every time P2 resets the location of any trap, it must wait at least k time steps to be able to
reallocate any trap again. In the example of world1, we select n = 4, ℓ = 1, and let k = 0; In the example of
world2, we select n = 3, ℓ = 1, and let k to be a variable.

In both examples: world1 and world2, the asymmetrical information is as follows:

• P1 knows the complete task φ1.

• P2 does not know the complete task φ1.

We refer to this situation as asymmetric information case. On the other side, if P2 knows P1’s complete task,
then we refer to that as symmetric information case. In the asymmetric information case, P2 has a hypothesis
space X = {¬obsUϕ | ϕ ∈ {A,B,C}}.

Different behaviors under asymmetric and symmetric information cases in world1. We compare
P1’s task completion rates between asymmetric information case and symmetric information case.

In the asymmetric information case, for each x ∈ X , P2 solves a Stackelberg/leader-follower game and
decides a trap configuration against the best response of P1 in game G(x). Let A2 be the set of different
configurations of traps. The strategy of P2 is obtained as follows:

π∗,x,2
2 (s) = arg min

a2∈A2

max
π1

π1

Pr(hh′ |= x | s, a2),

∀s ∈ S,

where Prπ1(hh′ |= x | a2) is the probability of P1 satisfying the formula x given P2’s action (trap configura-
tion) a2. For instance, if x = ¬obsUB and robot is at the (2, 4), then P2’s optimal action is to allocate the trap
to the blue cell right to robot, that is (3, 4). For each hypothesis x ∈ X and state s ∈ S, P2 solves the optimal
trap allocation action a2 and also computes the best response of P1 that achieves the maximum probability of
satisfying x from the state s. The joint strategy profiles for different hypotheses x ∈ X also enable P2 to infer

3For a word w = σ1σ2 . . . σn, a suffix of w is a word v of the form σiσi+1 . . . σn, where 1 ≤ i ≤ n.

74

5.2 Deceptive Strategies under Specification Misperception

(a) (b) (c)

Figure 5.6: Three key steps of deception in the simulation. (a) P2 predicts P1 is to reach B. (b) P2 reallocates
the trap given P1’s position. (c) P2 predicts that P1 is to reach C but it is too late for P2 to respond.

the subgoal of P1: P2 observes the behavior of P1 given the current trap location a2 and then infer, for which
x, P1’s behavior matches with the best response given x and a2 using the sliding-window change detection.

For the configuration of world1, we evaluate different window sizes and find sliding-window size m+1 =
2 and user-defined threshold c = 0.12 achieve a good trade-off between space complexity and accuracy in
prediction in this example. In the symmetric information case, P1 and P2 both have exact knowledge of task
specification φ1, and P1 wants to maximize the P1’s probability of finishing the task; P2 wants to minimize
the P1’s probability of finishing the task. We denote the Nash Equilibrium strategy profile by ⟨π∗

1, π
∗
2⟩, where

the Nash Equilibrium strategy profile is obtained as follows:

⟨π∗
1, π

∗
2⟩ = arg min

π2∈Π2

max
π1∈Π1

⟨π1,π2⟩
Pr (hh′ |= φ1).

Table 5.3: The completion rates for P1 in asymmetric information case and symmetric information case in
world1.

Info P1 Policy P2 Policy Completion rate (P1)
Asymmetric π̃∗

1 πB,2
2 66.96%

Symmetric π∗
1 π∗

2 29.69%

In Table. 5.3, we list P1’s completion rates for its task specification: one for asymmetric information case
and one for symmetric information case. From Table. 5.3, it indicates that under asymmetrical information,
by following the deceptive strategy given P2 plays BSR strategy, P1 has a higher probability of satisfying the
specification than that of the case by following the Nash Equilibrium strategy profile. The value of deceit in
world1 is VoD = 66.96%

29.69% = 2.26.
Note that in this case, P2 can only place traps near B and C but not A. We plot three key steps during

the simulation in Fig. (5.6). The solid lines denote the robot’s trajectories. In Fig. (5.6) (a), P2 predicts that P1
is to reach B after observing that the robot goes up. The prediction does not change until the robot reaches
(1, 4) in Fig. (5.6) (c). When the robot reaches (2, 4), P2 still predicts B (see Fig.5.6 (b)) and places the trap at
(3, 4) (see Fig.5.6 (c)). When the robot reaches (1, 4), P2 correctly predicts C . But it is too late, and P2 cannot
prevent the robot from reaching C . The deceptive strategy leverages this information asymmetry to lead P1

75

5.2 Deceptive Strategies under Specification Misperception

to achieve a higher probability of finishing its task. We provide a short video 4 to demonstrate the difference
between P2’s behaviors in the cases with asymmetric information and symmetric information, respectively.

Next, we investigate how delays in reallocating traps for P2 would affect the completion rate of P1. How-
ever, in the world1 example, we observed in experiments that any delay on reallocation could easily lead
P1 to complete its task. Based on this observation, we construct another example world2, and evaluate the
completion rates for every k steps of delay and effectiveness of model mismatch in this example world2.

Reallocation every k steps of delay in world2. In this example, we assume that P2 is restricted to only
reallocate the trap after k steps since the last reallocation, where k is an integer. P1 is aware of P2’s delay
k and synthesizes the deceptive strategy. Fig. (5.7) shows the completion rate of task (values of P1 at initial
state (2, 4) in Fig. (5.4b)) under different steps of delay up to k = 3. The results indicate that with the increase
of steps of delay, the probability of completing the task increases, and P1 exploits P2’s delay and lack of
information.

Figure 5.7: The task completion rates of P1 given P2 with k-step delay in reallocating traps, for k = 0, 1, 2, 3.

Detection of model mismatch in world2. We use experiments in the configuration world2 to demon-
strate the effectiveness of the detection mechanism, that is, to identify whether there is a deviation from the
predicted opponent model of P2. We set the significance level α = 0.05. If the likelihood of observed ac-
tion sequences is smaller than or equal to 0.05, we reject the null hypothesis: the data is generated by our
predicted model of P2.

We consider a case that P1 follows policy π̃∗
1 , and P2 plays the policy predicted by P1 for the first four

steps. After the first four steps, we let P2 play a random policy πR
2 , i.e., πR

2 (a | s) = 1
|A(s)| , for all a ∈ A(s).

The mismatch is detected at the 7-th step of the online interaction, and P1 is alerted that P2 deviates from the
predicted policy. We compute λ after each step and plot it in Fig. (5.8), where we also plot the χ2. (The reason
predicted λ = 0 is because the predicted policy πB,2

2 is deterministic.) From Fig. (5.8), we see that at the 7-th
4https://www.dropbox.com/s/i98ka56gdhdvxgq/video_10_09_2021.mp4?dl=0

76

https://www.dropbox.com/s/i98ka56gdhdvxgq/video_10_09_2021.mp4?dl=0

5.2 Deceptive Strategies under Specification Misperception

step of online interaction, we have λ > χ2, so we reject the null hypothesis H0. The degree of freedom in the
Chi-square detector is the number of the state-action pairs.

Figure 5.8: The likelihood ratio λ for online interaction between P1 and P2.

Complexity. Our realization of the proposed framework in examples includes three major components:
a) Inference with sliding-window change detection, b) Equilibrium solving of Stackelberg games, c) MDP
planning for deceptive planning. The inference with sliding-window change detection has an O(m) time
complexity, where m + 1 is the window size. It is noted that P2’s BSR strategies are computed using a set
of leader policies computed offline based on solving a set of Stackelberg games, one for each hypothesis.
Given P2’s BSR policy, we can reduce solving P1’s optimal deceptive strategy problem into an MDP planning
problem, which can be solved in polynomial time in the size of the states and actions [98], where the state
space is the product of the states in the game, the set of inference-equivalent histories, the DFA states, and a
set of hypotheses. We solve the equilibrium of Stackelberg games and solve the MDP with the value iteration
algorithm. We run algorithms on a Windows 10 machine with AMD Ryzen 9 5900X CPU and 16 GB RAM. The
computational time of equilibrium solving of Stackelberg games are about 5 s, and the computational time of
MDP planning is 140 s.

Finally, it is remarked that the deceptive planner can use different components given different inference
algorithms and solutions of P2’s BSR strategies. This analysis of complexity may not generalize to other
classes of hypergames.

77

5.2 Deceptive Strategies under Specification Misperception

78

Chapter 6

Planning with Incomplete Preferences over
Temporal Goals

This chapter investigates the problem of planning with incomplete preferences over temporal goals. We
introduce a novel automata-theoretic approach to qualitative planning in MDPs with incomplete preferences
over temporal logic objectives. Our approach consists of a language PrefScLTL to specify preferences overω-
regular reachability objectives, a procedure to construct an automaton representation of the preference model
defined by the PrefScLTL formula, and a synthesis algorithm to construct a maximal preference satisfying
strategy.

6.1 PrefScLTL: A Language to Specify Preferences over Temporal Objec-
tives

In this section, we introduce a new language to express preferences over scLTL formulas.

Definition 6.1 (Preference formula). Let φ be an scLTL formula. A preference formula is defined inductively
as follows.

α := φ ▷ φ | φ ≈ φ | φ ▷◁ φ | α ∧ α.

Given two scLTL formulas φ1 and φ2, the formula φ1 ▷φ2 represents that satisfying φ1 is strictly preferred
to satisfying φ2. The formula φ1 ≈ φ2 represents that satisfying φ1 is indifferent to satisfying φ2. The formula
φ1 ▷◁ φ2 represents that satisfying φ1 is incomparable to satisfying φ2. The formula α1 ∧ α2 represents that
both the preference formulas α1 and α2 should be satisfied.

The formula φ1 ⊵ φ2 represents that satisfying φ1 is weakly preferred to satisfying φ2. The operator ⊵
is a derived operator. Given a formula α that contains weak preference operator, a preference formula α′

containing only ▷,≈, ▷◁,∧ can be constructed based on [99, Ch. 2]: If φ1 ⊵ φ2 appears in α but φ2 ⊵ φ1

does not, then α′ contains φ1 ▷ φ2. If φ2 ⊵ φ1 appears in α but φ1 ⊵ φ2 does not, then α′ contains φ2 ▷ φ1.
If φ1 ⊵ φ2 and φ2 ⊵ φ1 appear in α, then α′ contains φ1 ≈ φ2. If neither φ1 ⊵ φ2 not φ2 ⊵ φ1 appears in
α, then α′ contains φ1 ▷◁ φ2.

The formulas φ1 ▷ φ2, φ1 ⊵ φ2, φ1 ≈ φ2, and φ1 ▷◁ φ2 are called atomic preference formulas. The
formulas containing ∧-operator are called general preference formulas.

A preference formula is interpreted using the preference model they induce over the set Σω (formalized in
Definition 6.5. The preference model determines, for a pair w,w′ ∈ Σω of words, whether w is preferred/in-
different/incomparable to w′.

Definition 6.2 (Preference Model). A preference model is a tuple P = ⟨U,⪰⟩, where U is a countable set of
outcomes and ⪰ is a reflexive and transitive binary relation, i.e., a partial order, on U .

79

6.1 PrefScLTL: A Language to Specify Preferences over Temporal Objectives

We recall that a binary relation ⪰ on U is reflexive if every element u ∈ U is related to itself, i.e., u ⪰ u.
It is transitive if u1 ⪰ u2 and u2 ⪰ u3 then u1 ⪰ u3 is true for any u1, u2, u3 ∈ U . When ⪰ is a partial
order, u1 ⪰ u2 and u2 ⪰ u1 implies u1 ≈ u2. An antisymmetric partial order, in which u1 ⪰ u2 and u2 ⪰ u1
implies u1 = u2, is called a preorder.

The preference model over Σω induced by a preference formula α is understood based on the preference
model induced by α over the set of scLTL formulas appearing in α. The following definition describes how
to construct the preference model from a preference formula.

Definition 6.3. The preference model induced by α over the set of scLTL formula appearing in φ is the tuple

P = ⟨F,⊵⟩,

where

• F = {φ0, φ1, . . . , φn}whereφ1, . . . , φn is the set of scLTL formula appearing inα andφ0 =
∧

i=1...n
¬φi.

φ0 is not included if φ0 = ⊥;

• ⊵ is the transitive closure of the set {(φi, φj) | 0 < i, j ≤ n : φi ⊵ φj or φi ▷ φj or φi ≈
φj appears in α} ∪ {(φi, φ0) | 0 < i, j ≤ n} ∪ {(φi, φi) | i = 0 ≤ i, j ≤ n}.

The set F containing φ0 is said to be the completion of the set of scLTL formulas {φ1, . . . , φn} appearing
in α since it ensures that, for every word w ∈ Σω , there exists a formula φi ∈ F, i = 0 . . . n, such that w |= α.
It is also noted that, by construction, ⊵ is a partial order.

Remark 6.1. In Definition 6.3, we follow the common assumption [54] that satisfying some outcome in F is
strictly preferred to satisfying none of them, i.e., φi ▷ φ0 for all i = 1 . . . n.

Combinative preferences. The model ⟨F,⊵⟩ is a combinative preference model, as opposed to an exclu-
sionary one. This is because we do not assert the exclusivity condition that the languages of any two formulas
φ1, φ2 in F have empty intersection. This allows us to represent a preference such as (♢ a ∧ ♢ b) ⊵ ♢ a, i.e.,
“Visiting A and B is preferred to visiting A,” where the less preferred outcome must be satisfied first in order
to satisfy the more preferred outcome. In literature, it is common to study exclusionary preference models
(see [53], [54] and the references within) because of their simplicity [64]. However, we focus on planning
with combinative preferences since they are more expressive than the exclusionary ones [100]. In fact, every
exclusionary preference model can be transformed into a combinative one, but the opposite is not true.

When a combinative preference model is interpreted over infinite plays, the agent needs a way to compare
the subsets of formulas in F satisfied by two plays. For instance, consider the preference formula (♢ a∧♢ b) ⊵
♢ a. Let ρ1, ρ2 be two plays. Suppose that ρ1 visits both A and B, and ρ2 visits A only. Therefore, ρ1 |= ♢ a∧♢ b,
whereas ρ2 |= ♢ a. To determine the preference between the two plays, the agent compares the set {♢ a,♢ b}
with {♢ a} to conclude that the ρ1 is preferred over ρ2. However, suppose the given preference formula is
♢ a ⊵ ♢ b. Then, the two plays would be indifferent since both satisfy the more preferred objective of visiting
A. In this case, the less preferred objective of visiting B would not influence the comparison of the sets. To
formalize this notion, we define the notion of most-preferred outcomes.

Given a non-empty subset X ⊆ F, let MP(X) ≜ {R ∈ X | ∄R′ ∈ X : R′ ▷ R} denote the set of
most-preferred outcomes in X.

Definition 6.4. Given a preference model ⟨F,⊵⟩ and a word w ∈ Σω , the set of most-preferred outcomes
satisfied by w is given by MP(w) ≜ MP({φ ∈ F | w |= φ}).

By definition, there is no outcome included in MP(w) that is preferred to any other outcome in MP(w).
Thus, we have the following result.

80

6.2 Preference Automaton

Algorithm 6.2.1: Construction of preference graph
1 Function PrefGraph⟨F,⊵⟩, ⟨Q,Σ, δ, ι⟩ is
2 Initialize X = ∅, E = ∅;
3 Let Λ← {Maximal(q⃗) | q⃗ ∈ Q};
4 X ← {{q⃗ ∈ Q | Maximal(q⃗) = λ} | λ ∈ Λ} is the set of nodes of preference graph;
5 forall (X,X ′) ∈ X × X do
6 Let q⃗, q⃗′ be two arbitrary states in X,X ′, respectively;
7 Initialize Cond1a ← false and Cond1b ← true;
8 forall (α, α′) ∈ Maximal(q⃗)×Maximal(q⃗′) do
9 if α ▷ α′ then
10 Cond1a ← true;
11 if α′ ▷ α then
12 Cond1b ← false;
13 if Cond1a = true ∧ Cond1b = true then
14 Add (X ′, X) to the set of edges E;

15 return G = ⟨X , E⟩

Lemma 6.1. For any word w ∈ Plays(M), every pair of outcomes inMP(w) are incomparable to each other.

Now, we formally define the interpretation of ⟨F,⊵⟩ in terms of the preference relation it induces on Σω .

Definition 6.5 (Semantics). Given a preference formula φ, let ⟨Σω,⪰⟩ be the preference model induced by
φ over Σω . Then, for any w1, w2 ∈ Σω , we have

• w1 ≻ w2, i.e., w1 is strictly preferred to w2, if and only if there exist a pair of outcomes α ∈ MP(w1)
and α′ ∈ MP(w2) such that α ▷ α′, and there does not exist a pair of outcomes α ∈ MP(w1) and
α′ ∈ MP(w2) such that α′ ▷ α.

• w1 ∼ w2, i.e., w1 is indifferent to w2, if and only if MP(w1) = MP(w2).

• w1 ∦ w2, , i.e., w1 is incomparable to w2, otherwise.

6.2 Preference Automaton

In this section, we introduce a novel computational model called a Deterministic Finite-state Preference Au-
tomaton (DFPA), which encodes the preference model ⟨Σω,⪰⟩ into an automaton. We present a procedure
to construct a Deterministic Finite-State Preference Automaton (DFPA) given a preference model P = ⟨F,⊵⟩
and prove its correctness with respect to the interpretation in Definition 6.5.

Definition 6.6. A deterministic finite-state preference automaton (DFPA) is a tuple,

B = ⟨Q,Σ, δ, ι, G⟩,

where Q,Σ, δ, ι are the finite set of states, the alphabet, the deterministic transition function, and an initial
state, similar to these components in a DFA. The last component G = (X , E) is called a preference graph,
where the set of nodes X ⊆ 2Q represents a partition of Q and E ⊆ X × X is a set of directed edges.

81

6.2 Preference Automaton

Given a word w = σ0σ1 . . . ∈ Σω , the path induced by w in the DFPA is the sequence of states q0q1 . . . ∈
Qω such that q0 = ι and for any integer k ≥ 0, we have qk+1 = δ(qk, σk). The preference graph G defines a
preference model over Q as follows: Each preference node X ∈ X represents an equivalence class of states
in Q such that any two states q, q′ ∈ X are indifferent to one another. Each edge (X,X ′) ∈ E represents a
strict preference that any state in X ′ is strictly preferred to any state in X and an absence of an edge between
two nodes X,X ′ ∈ X represents that any state in X is incomparable to any state in X ′.

Next, we describe the construction of DFPA given a preference model P = ⟨F,⊵⟩ induced by φ. The con-
struction involves two steps, namely, the construction of the underlying graph of DFPA and the construction
of the preference graph.

Definition 6.7. Let Ai = ⟨Qi,Σ, δi, ιi, Fi⟩ be the complete DFA representing the languages of αi for all
i = 0 . . . n. The underlying graph of the DFPA representing P is the tuple,

⟨Q,Σ, δ, ι⟩

where Q = ×n
i=0Qi is the set of states in DFPA. We represent each state in Q as a vector q⃗ and the i-th

component of q⃗, denoted as q⃗[i], is the state in Qi. Σ = ℘(AP) is a set of symbols. δ : Q × Σ → Q is the
transition function is defined as δ(q⃗, σ) = (δi(q⃗[i], σ))

n
i=0 for any state q⃗ ∈ Q and any symbol σ ∈ Σ; and

the initial state is ι⃗ = (ι0, . . . , ιn) where the state ι⃗[i] ∈ Qi is the initial state of the DFA Ai for any integer
i = 0 . . . n.

Notice that the underlying graph of the DFPA is identical to the underlying graph of the union product
of the DFAs [101] corresponding to the outcomes {φ0, . . . , φn}. The DFPA replaces the final states in the
union product with a preference graph which can be used to determine the preference relation between two
arbitrary words by comparing the sets of final states visited by their paths in the DFPA.

Algorithm 6.2.1 describes a procedure to construct the preference graph. Given the preference model and
the underlying graph of the DFPA, the lines 3-4 of Algorithm 6.2.1 construct the set of nodes X by grouping
together the states in Q that represent satisfaction of the same set of most-preferred outcomes. These most-
preferred outcomes for a state q⃗ are determined based on the subset of its components q⃗[i], i = 1 . . . n, that
are final states in the respective DFAs as follows: Let

Outcomes(q⃗) ≜{φi ∈ F | q⃗[i] ∈ Fi, i = 1 . . . n} ∪
{φ0 | ∀i ∈ {0 . . . n} : q⃗[i] /∈ Fi} (6.1)

denote the set of outcomes satisfied by any word in Σω with a good prefix whose last state is q⃗ ∈ Q. Clearly,
Outcomes(q⃗) = {φ0} if and only if the word has no prefix that satisfies any of the outcomes in {φ1, . . . , φn}.
Then, the set of most-preferred outcomes for q⃗ is defined as MP(q⃗) ≜ MP(Outcomes(q⃗)).

The lines 5-7 of Algorithm 6.2.1 define the edges of the preference graph. An edge from X ′ to X is
added to E if the conditions Cond1a and Cond1b are both true at the end of the for-loop. The variable
Cond1a represents the condition (1a) from Definition 6.5 that there exists a pair of most-preferred outcomes
α ∈ MP(q⃗) and α′ ∈ MP(q⃗′) satisfied by any state q⃗ ∈ X and q⃗′ ∈ X ′, such that α ▷ α′. The variable Cond1b
represents the (1b) from Definition 6.5. To ensure that α′ ̸▷ α holds for all pairs of most-preferred outcomes
α ∈ MP(q⃗) and α′ ∈ MP(q⃗′) satisfied by any state q⃗ ∈ X and q⃗′ ∈ X ′, the variable Cond1b is initialized to
true and, whenever a violation is witnessed (lines 11), it is set to false.

Proposition 6.1. Let X be the set of nodes constructed by Algorithm 6.2.1. Then, every state q⃗ ∈ Q belongs to a
unique node in X , i.e., X partitions Q.

Proof. Consider any state q⃗. We will show that q⃗ must be contained in some node in X and it cannot be
contained in more than one node. To see that it must be contained in some node, observe that, by construction
on line 3, there must exist λ∗ ∈ Λ such that MP(q⃗) = λ∗. By construction on line 4, each node in X

82

6.3 Solution Concepts

corresponds to a unique λ ∈ Λ. Therefore, q⃗ must be included in the node corresponding to λ∗. Since the
most-preferred set of any subset of F is unique, the condition MP(q⃗) = λ holds for exactly one λ ∈ Λ, which
is λ∗. Therefore, q⃗ must be included in a unique node X ∈ X .

We conclude this section by showing that the DFPA B = ⟨Q,Σ, δ, ι, G = ⟨X , E⟩⟩ constructed using
Definition 6.7 and Algorithm 6.2.1 indeed encodes the preference model P . First, we note that the set of most-
preferred outcomes satisfied by the states in the path of any preference graph word satisfies the following
property.

Lemma 6.2. Given any word w = σ0σ1 . . . ∈ Σω , let q⃗0q⃗1 . . . ∈ Qω be the path induced by w in the DFPA.
Then, there exists a finite integer k ≥ 0 such that Outcomes(q⃗k) = Outcomes(w). Moreover, for any integer
j > k, we have Outcomes(q⃗j) = Outcomes(q⃗k).

Proof. Without loss of generality, let Outcomes(w) = {φ1, . . . , φm}, 0 < m ≤ n, be the subset of outcomes
satisfied by the word w. Then, for every integer i = 1 . . .m, there exists an integer ki ≥ 0 such that the
prefix σ0 . . . σki is a good prefix for the scLTL formula φi. Choose k to be the largest integer from the set
{k1, . . . , km}. Then, the prefix σ0 . . . σk is a good prefix for every outcome in Outcomes(w) because every
finite extension of a good prefix is also a good prefix. Since δi(q⃗k[i], σ0 . . . σk) ∈ Fi for any good prefix
σ0 . . . σk, we have Outcomes(q⃗k) = Outcomes(w).

Because any two states that have identical most-preferred sets are represented by the same node in X ,
we have the following result.

Corollary 6.1. In Lemma 6.2, let k ≥ 0 be an integer such that Outcomes(q⃗k) = Outcomes(w). Then, there
exists a unique node X ∈ X such that q⃗j , q⃗k ∈ X , for all j ≥ k.

Given a word w ∈ Σω , the node X ∈ X that satisfies Corollary 6.1 is called a terminal node visited by w.

Theorem 6.2. Given two words w,w′ ∈ Σω , let q⃗0q⃗1 . . . ∈ Qω and q⃗′0q⃗
′
1 . . . ∈ Qω be the paths induced by

w,w′ in DFPA, respectively. Then, for any integer k ≥ 0 such that MP(q⃗k) = MP(w) and MP(q⃗′k) = MP(w′),
the following conditions hold:

1. An edge (X ′
k, Xk) ∈ E if and only if w ≻ w′.

2. Xk = X ′
k if and only if w ∼ w′.

3. Xk and X ′
k are disconnected in G if and only if w ∦ w′.

where Xk, X
′
k ∈ X are the nodes that contain q⃗k, q⃗

′
k, respectively.

Proof. (1). Let k ≥ 0 be an integer such thatMP(q⃗k) = MP(w) andMP(q⃗′k) = MP(w′). From Algorithm 6.2.1,
we know that an edge (X ′

k, Xk) ∈ E exists if and only if the following conditions hold: (a) there exists α, α′ ∈
F such thatα ∈ MP(q⃗k), α

′ ∈ MP(q⃗′k) andα▷α′, and (b) for allα, α′ ∈ F such thatα ∈ MP(q⃗k), α
′ ∈ MP(q⃗′k),

we have α′ ̸▷ α. Since MP(q⃗k) = MP(w) and MP(q⃗′k) = MP(w′) is known, the conditions (a) and (b) reduce
to the condition (1a) and (1b) from Definition 6.3. Finally, the statement (1) follows by Corollary 6.1. The
proofs of (2), (3) follow similarly.

6.3 Solution Concepts

In preference-based planning, the agent is to choose its next action given a finite prefix ν ∈ PrefPaths(M)
in order to satisfy the given preference relation on a set of outcomes. A naı̈ve approach to this problem is
to follow the strategy to satisfy a most-preferred outcome from the set of almost-surely achievable outcomes
given ν. However, this is not sufficient, as illustrated by the following example.

83

6.3 Solution Concepts

s5 s0 s4

s1 s2 s3

a b
b, c

c
a

a

Figure 6.1: Toy example to illustrate the limitation of almost-sure winning solution concept for preference-
based planning. The states with no outgoing transitions are sink states (the self-loops are omitted for clarity).

Example 6.1. Consider the toy MDP shown in Fig. (6.1). The exact probabilities are omitted because we
analyze the MDP qualitatively. The transitions are understood as follows: Given action a at state s0, it is
possible to reach both s5 and s1 with positive probabilities.

Let F1 = {s1, s5}, F2 = {s2, s4} and F3 = {s3} be three sets of final states. Let preference formula be
♢F2 ▷ ♢F1 ∧ ♢F3 ▷ ♢F1. Clearly, ♢F2 and ♢F3 are incomparable. Therefore, the play ρ1 = s0s

ω
3 , which

satisfies ♢F3, is strictly preferred to the play ρ2 = s0s5s
ω
1 , which satisfies ♢F1. Whereas, ρ1 is incomparable

to the play ρ3 = s0s
ω
4 because it satisfies ♢F2.

Consider the state s0 at which the agent is to choose its next action. From s0, the agent can visit F1

almost surely by choosing a. It, however, does not have an almost sure winning strategy to visit either F2 or
F3, individually. But, by choosing b at s0, the agent almost surely visits either F2 or F3 and achieves a strictly
better outcome than F1.

The example highlights that the almost sure winning solution concept is not suitable for preference-based
planning because it reasons about exactly one outcome at a time. As a result, the agent cannot reason about
opportunities to achieve a better outcome that may become available due to stochasticity in the environment.

In the sequel, we introduce two new solution concepts for probabilistic planning under incomplete pref-
erences interpreted over infinite plays. Our solution concepts are based upon the notion of an improvement
that generalizes the idea of improving flip [102] which is defined for propositional preferences. An improving
flip compares two outcomes representable as propositional logic formulas to determine which is more pre-
ferred. Analogously, an improvement compares two prefixes of a play to determine which one can yield a
more preferred outcome with probability one.

Given a prefix ν, let Outcomes(ν) = {φ ∈ F | ∃π ∈ Π,∀ρ ∈ Cone(M,ν, π) : ρ |= φ} be the set of
outcomes, each of which can be achieved almost-surely under some strategy. Note that different outcomes
may require different policies to achieve them.

Definition 6.8. Given a play ρ ∈ Plays(M) and two of its prefixes ν, ν ′ ∈ Pref(ρ) such that |ν ′| > |ν|,
ν ′ is said to be an improvement of ν if there exists a pair of outcomes R ∈ MP(Outcomes(ν)) and R′ ∈
MP(Outcomes(ν ′)) such that R′ ▷ R. And, ν ′ is said to be a weakening of ν if there exists a pair of outcomes
R ∈ MP(Outcomes(ν)) and R′ ∈ MP(Outcomes(ν ′)) such that R ▷ R′.

Given a prefix s0s1 . . . sk ∈ PrefPaths(M), the transition from sk−1 to sk is said to be an improving
transition if the prefix s0s1 . . . sk−1sk is an improvement over s0s1 . . . sk−1. A play that contains an improving
transition is called an improving play. It is noted that a prefix ν ′ can simultaneously be an improvement and
a weakening of a prefix ν.

Next, we define the two solution concepts that, while avoiding any weakening, induce improvements
either with positive probability or with probability one.

Definition 6.9 (SPI/SASI Strategy). Given a prefix ν = s0s1 . . . sk ∈ PrefPaths(M), a strategy π : S+ → 2A

is said to be safe and positively (resp., safe and almost-surely) improving for ν if the following conditions hold:

1. (Safety) For all ρ ∈ Cone(M,ν, π), the play νρ satisfies that s0s1 . . . sj is not a weakening of s0s1 . . . sk
for any integer j > k.

84

6.4 Synthesis of Opportunistic Preference Satisfying Strategies

2. (Improvement) There exists (resp., for any) ρ ∈ Cone(M,ν, π), the play νρ satisfies the condition that
there exists an integer j > k such that s0s1 . . . sj is an improvement over s0s1 . . . sk.

We now state our problem statement.

Problem 6.1. Given an MDP M and a preference model ⟨F,⊵⟩, design an algorithm to synthesize an SPI
and a SASI strategy.

6.4 Synthesis of Opportunistic Preference Satisfying Strategies

In this section, we show how to synthesize the positive and almost-surely preference satisfying strategies in
MDP given the DFPA corresponding to a preference formula φ. We begin by constructing a product of an
MDP and a DFPA that allows us to reason simultaneously about the stochastic environment and the preference
model.

Definition 6.10. Given an MDP M = ⟨S,A, T,AP, L⟩ and a DFPA B = ⟨Q,Σ, δ, ι, G = (X , E)⟩, the
product of the MDP and DFPA is the tuple,

M ≜ ⟨V,A,∆,G ≜ ⟨X̃ , E⟩⟩,

where V := S × Q is the finite set of states. A is the same set of actions as M . The transition function
∆ : V ×A→ D(V) is defined as follows: for any states (s, q⃗), (s′, q⃗′) ∈ V and any action a ∈ A, ∆((s′, q⃗′) |
(s, q⃗), a) = P (s′ | s, a) if q⃗′ ∈ δ(q⃗, L(s′)) and 0 otherwise. The component G = (X̃ , E) is a graph where
X̃ ≜ {S × X | X ∈ X} is the set of nodes and E is a set of edges such that, for any X̃i = S × Xi and
X̃j = S ×Xj , (X̃i, X̃j) ∈ E if and only if (Xi, Xj) ∈ E.

A path in the product MDP is an infinite sequence of states ϱ = v0v1 . . . ∈ V ω such that there exists an
action a ∈ A such that ∆(vi+1 | vi, a) > 0 holds for all i ≥ 0. Letting vi = (si, q⃗i) for all i ≥ 0, we define
the projection of a path ϱ ∈ V ω onto the DFPA B as the path ρ = ϱ ⇂B≜ q⃗0q⃗1 . . . ∈ Qω in B. The projection
maps a path in the product MDP to the corresponding path in the DFPA. Given a path ϱ ∈ V ω , we denote the
set of outcomes satisfied by ϱ by Outcomes(ϱ). The following result, which is a consequence of [103, Prop. 1],
states that an outcome α ∈ F is satisfied by ϱ if and only if its projection ϱ ⇂B satisfies φ.

Proposition 6.2. For any path ϱ inM, Outcomes(ϱ) = Outcomes(ϱ ⇂B) and MP(ϱ) = MP(ϱ ⇂B).

Due to Proposition 6.2, the preference between two paths in the product MDP can be determined by
comparing their projections onto the DFPA and using Theorem 6.2. But recall that, Problem 6.1 asks us to
design a positive (resp., almost-sure) preference satisfying strategy that achieves no worse outcome than that
possible by any other strategy with positive probability (probability one).

Our approach to synthesize SPI and SASI strategies distinguishes between opportunistic states, i.e., the
states from which an improvement could be made, and non-opportunistic states. We now introduce a new
model called an improvement MDP to synthesize the SPI and SASI strategies.

To facilitate the definition, we slightly abuse the notation and let MP((s, q⃗)) ≜ MP({φ ∈ F | φ ∈
Outcomes(q⃗)}) be the set of outcomes almost surely achievable from state v inM.

Definition 6.11 (Improvement MDP). Given a product MDPM, an improvement MDP is the tuple,

M̃ = ⟨Ṽ , A, ∆̃, v0, F̃⟩,

where Ṽ = V × {0, 1} is the set of states, A is the same set of actions asM, ṽ0 = (v0, 0) is the initial state,
and F = {(v, 1) | v ∈ V } is a set of final states that can only be reached by making an improvement. The
transition function ∆ : Ṽ × A → D(Ṽ) is defined as follows: For any states ṽ = (v,m), ṽ′ = (v′,m′) ∈ Ṽ
such that v ∈ X̃ and v′ ∈ X̃ ′ and for any action a ∈ A, ∆(ṽ, a, ṽ′) > 0 holds if and only if the following
conditions hold: T (v, a, v′) > 0 and either (X̃, X̃ ′) ∈ E and m′ = 1 holds or X̃ = X̃ ′ and m′ = 0 holds.

85

6.4 Synthesis of Opportunistic Preference Satisfying Strategies

Every play ρ = v0v1 . . . ∈ Plays(M) induces a play ϱ = ṽ0ṽ1 . . . in M̃ such that for all i = 0, 1, . . .,
ṽi = (vi,mi) where mi ∈ {0, 1} represents a memory element such that mi = 1 if and only if the transition
from vi−1 to vi is improving. The following proposition highlights important features of the improvement
MDP. Before that, we note the following fact to prove Proposition 6.3.

Lemma 6.3. For every prefix ν = v0v1 . . . vk ∈ PrefPaths(M), it holds that Outcomes(ν) = Outcomes(vk)
and thusMP(Outcomes(ν)) = MP(Outcomes(vk)).

The proof follows from the fact that memoryless strategies are sufficient to ensure the satisfaction of
reachability objectives in MDPs [20]. In other words, if an outcome is almost surely achievable given a prefix
ν = v0v1 . . . vk, then it is almost surely achievable given vk.

For convenience, we write MP(v) = MP(Outcomes(v)) to denote the set of most preferred outcomes
satisfiable/achievable with some strategy from a state v ∈ V .

Proposition 6.3. For any play ϱ = ṽ0ṽ1 . . . ∈ Plays(M̃) such that ṽi = (vi,mi) for all i = 0, 1 . . ., the
following statements hold.

1. (Safety). For every prefix ṽ0ṽ1 . . . ṽj ∈ PrefPaths(ϱ), v0v1 . . . vj is not a weakening of v0v1 . . . vi for any
0 ≤ i < j.

2. (Improvement). For every integer k > 0 such that vk ∈ F , the prefix v0v1 . . . vk is an improvement of
v0v1 . . . vk−1.

Proof (Sketch). For statement (1) to hold, it must be the case that R ̸ ▷R′ holds for all pairs of outcomes
R ∈ MP(si) and R′ ∈ MP(sj). This is true because of Lma. 6.3 and the fact that every transition from ṽi to
ṽi+1, j < i ≤ k, that violates the condition is disabled by Def. 6.11.

To see why statement (2) holds, consider an integer k > 0 such that ṽk ∈ F . Then, by construction, there
exists a pair R ∈ MP(vk−1) and R′ ∈ MP(vk) such that R′ ▷ R.

In words, the improvement MDP guarantees by construction that no play in Plays(M̃) violates the safety
condition of Def. 6.9. Moreover, it helps identify the opportunistic states as the ones that have an outgoing
transition into F̃ .

Corollary 6.3. A play ϱ ∈ Plays(M̃) is improving if and only if Occ(ϱ) ∩ F̃ ̸= ∅.

As a result, the problem of determining whether an improvement is possible from a state ṽ ∈ Ṽ reduces
to checking whether a state in F̃ can be reached from ṽ with a positive probability (in case of SPI strategy)
or with probability one (in case of SASI strategy).

Theorem 6.4. The following statements hold:

1. Any positive winning strategy πPWin(F̃) in M̃ is an SPI strategy.

2. Any almost-sure winning strategy πASWin(F̃) in M̃ is an SASI strategy.

The proof follows from the fact that there exists a (resp., every) play ρ ∈ Cone(M̃, ṽ0, π) induced by
any positive (resp., almost-sure) winning strategy π visits F̃ with positive probability (resp., probability one)
[104]. Therefore, Thm. 6.4 establishes that by following πPWin(F̃) (resp., πASWin(F̃)), the agent is ensured to
make an improvement with a positive probability (resp., with probability one). It is noted that an SPI (resp.,
SASI) strategy exists if and only if the corresponding positive (resp., almost-sure) winning strategy exists in
M̃.

The SPI and SASI strategies from Thm. 6.4 guarantee that at least one improvement will occur with positive
probability or with probability one. Next, we present Alg. 6.4.1, using which we can determine the maximum

86

6.4 Synthesis of Opportunistic Preference Satisfying Strategies

Algorithm 6.4.1: Level set for constructing safe and almost-surely improving strategy.
1 Inputs:] Improvement MDP, M̃;
2 Outputs: Level set,W ;
3 i← 0 ;
4 Ri ← F ;
5 while Ri is not empty do
6 Wi+1 ← ASWin(Ri);
7 Ri+1 ← {(v, 1) ∈ F | (v, 0) ∈Wi+1};
8 if i = 0 then
9 Add Ṽ \Wi+1 to level 0 inW ;

10 Add Wi+1 to level i+ 1 inW ;
11 i← i+ 1;
12 returnW

number of improvements that can almost surely be made from a given state in M̃. The algorithm to determine
the maximum number of improvements possible from a given state in M̃ with a positive probability and its
properties are similar to Alg. 6.4.1.

First, note the following properties of the improvement MDP which follow from the construction of MDP.

Proposition 6.4. Consider two states (v, 0), (v, 1) ∈ Ṽ , it holds that for any action a ∈ A, we have Supp(∆̃((v, 0), a)) =
Supp(∆̃((v, 1), a)).

The proof is straightforward because given (v, 0), (v, 1), for any action a ∈ A, if a transition from v to v′

given a is improving, then ∆̃((v, 0), a, (v′, 1)) > 0 and ∆̃((v, 1), a, (v′, 1)) > 0. Else, ∆̃((v, 0), a, (v′, 0)) > 0
and ∆̃((v, 1), a, (v′, 0)) > 0.

Corollary 6.5. The final states F̃ can be visited again from a state (v, 1) ∈ Ṽ with a positive probability (resp.,
with probability one) if and only if F̃ can be visited from (v, 0) with a positive probability (resp., with probability
one).

Proof. Let π be a positive winning strategy to visit F̃ from (v, 0). Let Y = Supp(∆̃((v, 0), a)) for some
a ∈ π((v, 0)). By the property of a positive winning strategy, a state in F̃ is reached with positive probability
by following π from any state in Y . By Proposition 6.4, Y = Supp(∆̃((v, 1), a)). Therefore, by choosing
a at (v, 1) and then following π, a state in F̃ is visited with positive probability from (v, 1). The proof for
almost-sure winning is similar.

Intuitively, Alg. 6.4.1 constructs a setW of level sets such that from any state that appears at k-th level in
W , at least k visits to F̃ are guaranteed and, thereby, at least k improvements can be made.

For this purpose, it iteratively computes the almost-sure winning region to visit the states in Ri ⊆ F̃ ,
from which F̃ can be visited at least i times. We denote by Wi the i-th level set. The level-0 ofW contains
the states Ṽ \ ASWin(F̃) from which F̃ cannot be visited again with probability one. That is, 0-visits to F̃
are guaranteed from any state in level-0 ofW . Every state in level-1 ofW is almost surely winning to visit
F̃ . Hence, at least one visit to F̃ is guaranteed. Now, consider the subset R1 = {(v, 1) ∈ F | (v, 0) ∈ W1}
of final states F̃ . By Corollary 6.5, because (v, 0) ∈ W1 = ASWin(F̃), there exists a strategy from every
state in R1 to visit F̃ with probability one. Therefore, from any state (v, 0) ∈ W2 = ASWin(R1) at least
two improvements are guaranteed—first, when visiting (v′, 1) ∈ R1 and, second, when visiting R0 = F̃ by
following the almost-sure winning strategy at (v′, 1). Repeating a similar argument, it follows that at least
k-visits are guaranteed almost surely from states at k-th level inW .

87

6.5 Example: Robot Motion Planning in Stochastic Gridworld

The largest integer k ≥ 0 such that the state (v, 0) ∈ Ṽ appears at k-th level ofW is called the rank of
the states (v, 0) and (v, 1), denoted as rank(v, 0) = rank(v, 1) = k.

Proposition 6.5. From any state ṽ = (v,m) ∈ Ṽ , m ∈ {0, 1}, there exists a strategy to visit F̃ at least
rank(ṽ)-many times.

Proof. We construct the strategy that achieves rank(ṽ) improvements: First, if rank(ṽ) = k, then by con-
struction it is in ASWin(Rk−1). Following the almost-sure winning strategy a state in Rk−1 can be reached
with probability one and thus the first improvement is made. Upon reaching a state, say (v′, 1), in Rk−1, we
have (v′, 0) ∈Wk−1. Because Wk−1 = ASWin(Rk−2), an almost-sure winning strategy exists to reach Rk−2

and hence the second improvement. Repeating similar steps, eventually, R0 will be reached after the k-th
improvement.

Corollary 6.6. From any state ṽ = (v,m) ∈ Ṽ at most rank(ṽ)-many visits to F̃ are almost surely guaranteed.

Proof (Sketch). By contradiction. Suppose that rank(ṽ) = k but k + 1 visits to F̃ are possible from ṽ. Since
k + 1 visits are possible from ṽ, by definition ofW , it must be the case that ṽ ∈ Wk+1. If ṽ is at (k + 1)-th
level inW then its rank must be at least k + 1—a contradiction.

The proof of Proposition 6.5 defines the strategy that allows the agent to make rank(v) improvements
from any state v.

Complexity. Alg. 6.4.1 runs in polynomial time with respect to the size of M̃ since the while loop can
run no more than |Ṽ | times and the complexity of ASWin is quadratic in the size of M̃ [77].

6.5 Example: Robot Motion Planning in Stochastic Gridworld

We illustrate our approach using a motion planning problem for a robot in a 5 × 5 gridworld as shown in
Fig. (6.2). The gridworld environment consists of seven regions: {A : (0, 0), B : (2, 0), C : (4, 0), D :
(2, 4), E : (4, 4), F : (1, 2)} from which the robot must pick up an item. There is a charging station at cell
(4, 2). Each cell is denoted using the convention (row, col). The robot can choose among four actions N,
S, E, W to deterministically move north, east, south, and west by one cell. The actions E, W are disabled in
the cells (4, 2) and (2, 2). The cells (1, 1), (3, 1), (1, 3), (3, 3) are slippery; that is, whenever the robot moves
into any of these cells, say (1, 1), it may non-deterministically end up in either the same cell (1, 1), or the
cell north to it (2, 1), or south to it (0, 1). In any cell, if applying an action results in a cell that is outside
the gridworld or contains an obstacle, the robot returns to the same cell. The robot has a limited battery of 8
units, which it may recharge by visiting the charging station. The robot spends 1 unit to execute each action.

Initially, only the items at A,B, and C are available for pickup. That is, if the robot visits the charging
station or regions D,E, F , then neither its battery will be recharged nor will it be able to pick up items
D,E, F . When the robot picks up an item at A or B, the charging station and the items at D,E become
available. When the robot picks up an item at C , the charging station and the items at E,F become available.
The following preference about picking up the items is given to the robot:

(♢D ▷ ♢A) ∧ (♢E ▷ ♢A) ∧ (♢D ▷ ♢B) ∧ (♢E ▷ ♢B) ∧ (♢E ▷ ♢C) ∧ (♢F ▷ ♢C).

By default, picking up any item is preferred to not picking up any item.
Note that the preference model given to the robot is incomplete as well as combinative. It is incomplete

because picking up items A,B,C are mutually incomparable outcomes. Similarly, picking up items D,E, F
are mutually incomparable. It is combinative because, for instance, any play in which robot picks up an item
from D or E is considered preferred to a play in which robot only picks an item from A or B, even though
to pick an item from D or E an item from A or B must be picked first.

88

6.5 Example: Robot Motion Planning in Stochastic Gridworld

Figure 6.2: A gridworld example in which the black arrows with no-entry symbol denote the disabled actions
from that state and green arrows show the random outcomes on entering the cell.

SASI SPI
Rank-1 768 926
Rank-2 98 167

Table 6.1: Number of states from which the robot has a safe and positively improving and safe and almost-
surely improving strategies to make at least 1 or at least 2 improvements.

We implemented the example in Python 3.9 on a Windows 10 machine with a core i7, 2.80GHz CPU, and
32GB memory. The SPI and SASI strategies are computed using set-based positive and almost-sure winning
algorithms implemented in https://github.com/abhibp1993/ggsolver/. We discuss a few noteworthy
observations next. The improvement MDP for this case has 3600 states and 18496 transitions, whereas the
improvement MDP has 7200 states and 35524 transitions. The time required for constructing the improvement
MDP is 9.47 seconds which includes time required to solve for almost-sure winning regions to visit A-F
independently. Whereas, the construction of SASI and SPI strategies took 6.54 seconds and 7.23 seconds,
respectively.

Consider the initial state s0 = (2, 2, 8, (1, 1, 1, 0, 0, 0, 0)) in which the robot is at cell (2, 2) with 8 units of
battery. The fourth component of the state denotes which items are available for pickup, with the last element
of the tuple reserved for the availability of the charging station. In this state, the robot has no almost-sure
winning strategy to visit any of A,B, or C . This is because to visit, say, A; the robot must visit the slippery
cell (1, 1). But whenever (1, 1) is visited, the robot may reach (2, 1) with a positive probability. Hence,
MP(Outcomes(s0)) = ∅.

When we use the SASI concept, the rank of the state (s0, 1) is 2, indicating that two improvements are
almost surely guaranteed. This is understood by observing the SASI strategy which chooses action N at (s0, 0)
to reach s1 = (3, 2, 7, (1, 1, 1, 0, 0, 0, 0)). At (s1, 0) the strategy selects W and visits either B or C with
probability one. Since a pickup from B and C are incomparable, both actions N and S are deemed valid under
SASI strategy at (3, 1, 6, (1, 1, 1, 0, 0, 0, 0)). On visiting either B or C , the SASI strategy follows the almost-
sure winning strategy to visit either D or E to make a second improvement. Since visiting cell (3, 3) may
result in returning back to cell (3, 2) with a positive probability, the robot can recharge itself until a successful
visit to E or D is made.

The SASI strategy at (s0, 0) does not select S because a second improvement cannot be guaranteed with
probability one after visitingA since the robot may remain at the cell (0, 1) until its battery runs out. However,
we observe that the SPI strategy at (s0, 0) allows the selection of both actions N, S at (s0, 0) since in both
cases, two improvements are possible with positive probability.

We conclude with Table. 6.1 that shows the number of states from which the robot has an SPI and SASI

89

https://github.com/abhibp1993/ggsolver/

6.5 Example: Robot Motion Planning in Stochastic Gridworld

strategies to make at least 1 or 2 improvements, since the maximum number of improvements possible under
given preference model is 2. We note that the states from which a SASI strategy exists are a subset of states
from which an SPI strategy exists.

90

Chapter 7

Conclusion and Perspectives

In this dissertation we have studied the synthesis of winning strategies in games on graphs with two kinds
of incomplete information: exteroceptive and interoceptive. We studied three fundamental classes of two-
player games on graphs with one-sided exteroceptive incomplete information and the synthesis of preference
satisfying strategies in single-player stochastic games with interoceptive incomplete information.

7.1 Achievements and Perspectives

The key achievements of this dissertation are as follows.

Hypergame theory for games on graphs. This dissertation lays the foundations for studying hypergame
theory for games on graphs. We define the categorization of hypergames in two ways based on whether the
perceptions of players remain static or evolve during the interaction. We introduce a static hypergame on
graph to model an interaction where perceptions of players remain constant throughout the interaction. We
study static hypergames on graphs under two settings. First, when P2’s perception remains constant because
of its ignorance or its incapability to update its perception based on observations. In this setting, we show that
P1 can synthesize opportunistic strategies, which capitalize on P2’s misperception to enforce a win from an
otherwise losing state (i.e., a losing state in the game with perfect and complete information). Second, when
P2 has the capability of updating its perception, but P1 intentionally prevents it by only selecting actions that
are subjectively rationalizable for P2. We formalize this idea by introducing the solution concepts of stealthy
deceptive sure winning and stealthy deceptive almost-sure winning. We introduce a dynamic hypergame to
model situations where P2’s perception could evolve during the game. A dynamic hypergame captures the
evolution of P2’s subjectively rationalizable strategies with respect to changes in its perception. For these
models, we introduce the solution concepts of deceptive sure winning and deceptive almost-sure winning.
Both these concepts are not stealthy since the model permits the perceptions of players to evolve. For the
three fundamental classes of misperceptions possible in games on graphs, this dissertation investigates the
important properties of hypergame on graphs and presents the algorithms to synthesize winning strategies
for P1 and P2 under the introduced solution concepts.

From a high-level perspective, the hypergame-theoretic approach used to studying games on graphs with
incomplete information enables us to model and analyze the rational behavior of the players who may be un-
aware of their misperception and may have an ability to update their perceptions by observing the history of
their interaction. This not only pushes the boundary of the state-of-the-art in sequential decision-making in
infinite-duration interaction but also in significantly advances the field of games with incomplete information.
Most importantly, we have employed a reductionist approach wherever possible: Except for the class of action
misperception, we successfully reduce the synthesis problem for a game on graph with incomplete informa-
tion to that of synthesizing a winning strategy for a game on graph with perfect and complete information. In

91

7.2 Future Work

static hypergames, we observed that the reduction only adds a polynomial-time overhead. Thus, overall, the
synthesis procedure completes within polynomial-time. This observation is particularly important because
the conventional Bayesian games approach would have first transformed the game with incomplete informa-
tion to that with imperfect information. And, most algorithms games on graphs with imperfect information
require at least exponential-time to synthesize winning strategies.

Automata-theoretic approach to preference-based planning. This dissertation introduces an automata-
theoretic approach to synthesizing strategy given incomplete preferences over temporal goals. Following a
declarative paradigm, we define a language to specify a preference over a set of scLTL specifications, a proce-
dure to translate the specification into a computational model, i.e., a newly introduced preference automaton,
and design a procedure to use the preference automaton to synthesize a preference satisfying strategy in a
stochastic environment under two solution concepts: safe and positively improving, and safe and almost-
surely improving.

Our solution makes a fundamental contribution to addressing the problem of sequential decision-making
under combinative, incomplete preferences, which may require the agent to choose between incomparable
outcomes. This is mainly because the classical approaches to decision theory that rely upon dominance prin-
ciple fail in this situation.

Computation tools. Finally, all the algorithms introduced in this dissertation were implemented in a uni-
fied framework for solving games on graphs available at www.akulkarni.me/software.

7.2 Future Work

The approaches presented in this thesis open up a set of directions for future work.

Hypergames on graphs. Our development of hypergames is still in its early stages. We enlist three di-
rections for potential investigation. First, we only consider up to level-2 hypergames in this work. A level-2
hypergame can model situations where at least one player knows that its opponent misperceives certain com-
ponent of the game. But the opponent does not know that the player is aware of this fact. However, average
humans are known to reason upto six levels (think of yourself playing a card game like Bridge or not-at-
home), whereas some advanced poker or chess players can reason upto eight levels. In this regard, for the
autonomous agents to interact effectively with humans, they should at least be able to reason at eight levels,
if not more.

Second, the solution concepts introduced in this work are based on the concept of subjective rational-
izability in normal-form hypergames. As discussed in the introduction, there are several solution concepts
for hypergames that provide insights into rational behavior of agents under incomplete information. For ex-
ample, the Fraser-Hipel equilibrium investigates the behavior of agents when a subset of them can impose
“sanctions” on a player who might unilaterally deviate from an equilibrium point. At present, it is unclear
whether these solution concepts are related to any of the known solution concepts for games on graphs. In-
vestigating these connections could lead to deeper insights into sequential decision-making under incomplete
information, especially in multi-agent settings.

Lastly, the algorithms presented in this dissertation were designed with the aim of being intuitive and easy
to prove their correctness. Hence, there may exist more efficient algorithms to solve the synthesis problem
for these classes. It would be worthwhile to investigate and establish the lower-bound on the complexity of
solving these class of problems.

Planning with incomplete preferences. We propose two future directions. First, it would be useful to
investigate various ways to define semantics of the preference language. It is non-trivial to define a “good”

92

www.akulkarni.me/software

7.2 Future Work

way to interpret a preference language when incompleteness is permitted. To compare two outcomes (i.e.,
infinite paths), one must compare the sets of temporal logic formulas satisfied by those outcomes. There are
numerous ways to define this comparison. It is also clear to us that no one way is the correct way! Instead,
the usefulness of semantics is application driven.

Second, the present work considers single-player stochastic games on graphs with incomplete preferences.
It would be interesting to investigate the synthesis problem for two or more player games on graphs where
each player plays to maximally satisfy its preference relation. Such games are of great interest to domains
such as social choice theory, economics, and database systems apart from game theory.

93

7.2 Future Work

94

Bibliography

[1] Z. Aslanyan, F. Nielson, and D. Parker, Quantitative verification and synthesis of attack-defence scenar-
ios, 2016 IEEE 29th Computer Security Foundations Symposium (CSF), IEEE, 2016, pp. 105–119 (cit. on
p. 11).

[2] S. Jha, O. Sheyner, and J. Wing, Two formal analyses of attack graphs, Proceedings 15th IEEE Computer
Security Foundations Workshop. CSFW-15, IEEE, 2002, pp. 49–63 (cit. on p. 11).

[3] R. R. Hansen, P. G. Jensen, K. G. Larsen, A. Legay, and D. B. Poulsen, Quantitative evaluation of at-
tack defense trees using stochastic timed automata, International Workshop on Graphical Models for
Security, Springer, 2017, pp. 75–90 (cit. on p. 11).

[4] A. N. Kulkarni, J. Fu, H. Luo, C. A. Kamhoua, and N. O. Leslie, Decoy allocation games on graphs
with temporal logic objectives, International Conference on Decision and Game Theory for Security,
Springer, 2020, pp. 168–187 (cit. on pp. 11, 16, 38–40).

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, Temporal logic motion planning for dynamic
robots, Automatica, vol. 45, no. 2, pp. 343–352, 2009 (cit. on p. 11).

[6] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, Temporal-logic-based reactive mission and motion plan-
ning, IEEE Transactions on Robotics, vol. 25, pp. 1370–1381, 2009 (cit. on p. 11).

[7] P. J. Ramadge and W. M. Wonham, The control of discrete event systems, Proceedings of the IEEE, vol. 77,
no. 1, pp. 81–98, 1989 (cit. on p. 11).

[8] A. Puri, Theory of hybrid systems and discrete event systems, 1996 (cit. on p. 11).
[9] L. De Alfaro, T. A. Henzinger, and O. Kupferman,Concurrent reachability games, Theoretical Computer

Science, vol. 386, no. 3, pp. 188–217, 2007 (cit. on pp. 11–13, 17, 21, 22, 29).
[10] O. Kupferman and M. Y. Vardi, Model checking of safety properties, Formal Methods in System Design,

vol. 19, no. 3, pp. 291–314, 2001 (cit. on pp. 11, 22).
[11] J. C. Harsanyi, Games with incomplete information played by “bayesian” players, i–iii part i. the basic

model, Management science, vol. 14, no. 3, pp. 159–182, 1967 (cit. on pp. 12, 13).
[12] J. H. Reif, The complexity of two-player games of incomplete information, J. Comput. Syst. Sci., vol. 29,

pp. 274–301, 1984 (cit. on pp. 12, 13).
[13] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, Planning and acting in partially observable stochastic

domains, Artif. Intell., vol. 101, pp. 99–134, 1998 (cit. on p. 12).
[14] E. A. Hansen, D. S. Bernstein, and S. Zilberstein,Dynamic programming for partially observable stochas-

tic games, AAAI Conference on Artificial Intelligence, 2004 (cit. on p. 12).
[15] J. D. Levin, Dynamic games with incomplete information, 2002 (cit. on p. 12).
[16] N. Bertrand, B. Genest, and H. Gimbert, Qualitative determinacy and decidability of stochastic games

with signals, 2009 24th Annual IEEE Symposium on Logic In Computer Science, pp. 319–328, 2009
(cit. on pp. 12, 13).

95

https://api.semanticscholar.org/CorpusID:14105338
https://api.semanticscholar.org/CorpusID:14105338
https://api.semanticscholar.org/CorpusID:117641247
https://api.semanticscholar.org/CorpusID:37825256
https://api.semanticscholar.org/CorpusID:5613003
https://api.semanticscholar.org/CorpusID:5613003
https://api.semanticscholar.org/CorpusID:1015883
https://api.semanticscholar.org/CorpusID:1015883
https://api.semanticscholar.org/CorpusID:18947917
https://api.semanticscholar.org/CorpusID:10250498
https://api.semanticscholar.org/CorpusID:10250498

BIBLIOGRAPHY

[17] D. A. Martin, Borel determinacy, Annals of Mathematics, vol. 102, no. 2, pp. 363–371, 1975 (cit. on
pp. 12, 21).

[18] D. A. Martin,Thedeterminacy of blackwell games, The Journal of Symbolic Logic, vol. 63, no. 4, pp. 1565–
1581, 1998 (cit. on p. 12).

[19] L. De Alfaro and T. A. Henzinger, Concurrent omega-regular games, Proceedings Fifteenth Annual
IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332), IEEE, 2000, pp. 141–154 (cit. on
pp. 12, 13).

[20] L. de Alfaro and R. Majumdar, Quantitative solution of omega-regular games, Proceedings of the thirty-
third annual ACM symposium on Theory of computing, 2001, pp. 675–683 (cit. on pp. 12, 86).

[21] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on infinite trees,
Theoretical Computer Science, vol. 200, no. 1-2, pp. 135–183, 1998 (cit. on pp. 13, 40).

[22] J. H. Reif, Universal games of incomplete information, Proceedings of the eleventh annual ACM sym-
posium on theory of computing, 1979, pp. 288–308 (cit. on p. 13).

[23] K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger, Randomness for free, Mathematical Foun-
dations of Computer Science 2010: 35th International Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings 35, Springer, 2010, pp. 246–257 (cit. on p. 13).

[24] K. Chatterjee, L. Doyen, S. Nain, and M. Y. Vardi, The complexity of partial-observation stochastic parity
games with finite-memory strategies, International Conference on Foundations of Software Science and
Computation Structures, Springer, 2014, pp. 242–257 (cit. on p. 13).

[25] S. Nain and M. Y. Vardi, Solving partial-information stochastic parity games, 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, IEEE, 2013, pp. 341–348 (cit. on p. 13).

[26] V. Gripon and O. Serre, Qualitative concurrent stochastic games with imperfect information, Interna-
tional Colloquium on Automata, Languages, and Programming, Springer, 2009, pp. 200–211 (cit. on
p. 13).

[27] P. G. Bennett, Toward a theory of hypergames, Omega, vol. 5, no. 6, pp. 749–751, 1977 (cit. on pp. 13,
14, 23, 48).

[28] J. .-. Mertens and S. Zamir, Formulation of bayesian analysis for games with incomplete information,
International journal of game theory, vol. 14, pp. 1–29, 1985 (cit. on p. 13).

[29] R. J. Aumann, M. Maschler, and R. E. Stearns, Repeated games with incomplete information. MIT press,
1995 (cit. on p. 13).

[30] J. C. Harsanyi, Games with incomplete information played by “bayesian” players part ii. bayesian equi-
librium points, Management Science, vol. 14, no. 5, pp. 320–334, 1968 (cit. on p. 13).

[31] G. Bonanno, Agm-consistency and perfect bayesian equilibrium. part i: Definition and properties, Inter-
national Journal of Game Theory, vol. 42, pp. 567–592, 2013 (cit. on p. 14).

[32] M. Wang, K. W. Hipel, and N. M. Fraser, Solution concepts in hypergames, Applied Mathematics and
Computation, vol. 34, no. 3, pp. 147–171, 1989 (cit. on p. 14).

[33] R. R. Vane and P. E. Lehner, Using hypergames to increase planned payoff and reduce risk, Autonomous
Agents and Multi-Agent Systems, vol. 5, pp. 365–380, 2002 (cit. on p. 14).

[34] N. S. Kovach and G. B. Lamont, Trust and deception in hypergame theory, 2019 IEEE National Aerospace
and Electronics Conference (NAECON), IEEE, 2019, pp. 262–268 (cit. on p. 14).

[35] D. M. Kilgour, K. W. Hipel, and L. Fang, The graph model for conflicts, Autom., vol. 23, pp. 41–55, 1987
(cit. on p. 14).

96

https://api.semanticscholar.org/CorpusID:26676112
https://api.semanticscholar.org/CorpusID:27493624

BIBLIOGRAPHY

[36] J. T. House and G. V. Cybenko, Hypergame theory applied to cyber attack and defense, Defense + Com-
mercial Sensing, 2010 (cit. on p. 14).

[37] B. L. Slantchev,Theprinciple of convergence in wartime negotiations, American Political Science Review,
vol. 97, pp. 621–632, 2003 (cit. on p. 14).

[38] C. N. Gutierrez, S. Bagchi, H. Mohammed, and J. Avery, Modeling deception in information security as
a hypergame–a primer, Proceedings of the 16th Annual Information Security Symposium, CERIAS-
Purdue University, 2015, p. 41 (cit. on p. 14).

[39] N. S. Kovach, A temporal framework for hypergame analysis of cyber physical systems in contested
environments, 2016 (cit. on p. 14).

[40] B. Gharesifard and J. Cortes, Evolution of Players’ Misperceptions in Hypergames Under Perfect Obser-
vations, IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1627–1640, Jul. 2012 (cit. on p. 14).

[41] B. Gharesifard and J. Cortés, Stealthy deception in hypergames under informational asymmetry, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 6, pp. 785–795, 2013 (cit. on
p. 14).

[42] Y. Sasaki, Subjective rationalizability in hypergames. Hindawi Publishing Corporation, 2014 (cit. on
pp. 14, 24, 69).

[43] S. Zamir, Bayesian games: Games with incomplete information. Springer, 2020 (cit. on p. 14).
[44] S. Morris,The common prior assumption in economic theory, Economics and Philosophy, vol. 11, pp. 227–

253, 1995 (cit. on p. 14).
[45] J. Y. Halpern, Characterizing the common prior assumption, Microeconomic Theory eJournal, 1998 (cit.

on p. 14).
[46] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, From patches to honey-patches: Lightweight

attacker misdirection, deception, and disinformation, Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security, 2014, pp. 942–953 (cit. on p. 14).

[47] Y. Sasaki and K. Kijima,Hierarchical hypergames and bayesian games: A generalization of the theoretical
comparison of hypergames and bayesian games considering hierarchy of perceptions, Journal of Systems
Science and Complexity, vol. 29, pp. 187–201, 2016 (cit. on p. 14).

[48] N. M. Fraser and K. W. Hipel, Solving complex conflicts, IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 9, no. 12, pp. 805–816, 1979 (cit. on p. 14).

[49] K. W. Hipel and N. Fraser, Conflict analysis. North-Holland, 1990 (cit. on p. 14).
[50] K. Kijima, Intelligent poly-agent learning model and its application, Information and Systems Engineer-

ing, vol. 2, pp. 47–61, 1996 (cit. on p. 14).
[51] Y. Sasaki, N. Kobayashi, and K. Kijima, Mixed extension of hypergames and its applications to inspection

games, Proceedings of the 51st Annual Meeting of the ISSS-2007, Tokyo, Japan, 2007 (cit. on p. 14).
[52] J. Dubra, F. Maccheroni, and E. A. Ok, Expected utility theory without the completeness axiom, Journal

of Economic Theory, vol. 115, no. 1, pp. 118–133, 2004 (cit. on p. 15).
[53] J. A. Baier and S. A. McIlraith, Planning with preferences, AI Mag., vol. 29, pp. 25–36, 2008 (cit. on pp. 15,

80).
[54] M. Bienvenu, C. Fritz, and S. A. McIlraith, Specifying and computing preferred plans, Artificial Intelli-

gence, vol. 175, no. 7-8, pp. 1308–1345, 2011 (cit. on pp. 15, 80).
[55] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, Least-violating control strategy synthesis

with safety rules, Proceedings of the 16th international conference on Hybrid systems: computation
and control, 2013, pp. 1–10 (cit. on p. 15).

97

https://api.semanticscholar.org/CorpusID:119895114
https://api.semanticscholar.org/CorpusID:45697255
http://dx.doi.org/10.1109/TAC.2011.2180113
http://dx.doi.org/10.1109/TAC.2011.2180113
https://api.semanticscholar.org/CorpusID:154696125
https://api.semanticscholar.org/CorpusID:8145017
https://api.semanticscholar.org/CorpusID:988607

BIBLIOGRAPHY

[56] T. Wongpiromsarn, K. Slutsky, E. Frazzoli, and U. Topcu, Minimum-violation planning for autonomous
systems:Theoretical and practical considerations, 2021 American Control Conference (ACC), IEEE, 2021,
pp. 4866–4872 (cit. on p. 15).

[57] H. Rahmani and J. M. O’Kane, What to do when you can’t do it all: Temporal logic planning with soft
temporal logic constraints, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2020, pp. 6619–6626 (cit. on p. 15).

[58] N. Mehdipour, C.-I. Vasile, and C. Belta, Specifying user preferences using weighted signal temporal logic,
IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2020 (cit. on p. 15).

[59] M. Lahijanian and M. Kwiatkowska, Specification revision for markov decision processes with optimal
trade-off , 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7411–7418, 2016 (cit. on
p. 15).

[60] M. Li, A. Turrini, E. M. Hahn, Z. She, and L. Zhang, Probabilistic preference planning problem for markov
decision processes, IEEE transactions on software engineering, 2020 (cit. on p. 15).

[61] J. Fu, Probabilistic planning with preferences over temporal goals, 2021 American Control Conference
(ACC), pp. 4854–4859, 2021 (cit. on p. 15).

[62] R. Nau, The shape of incomplete preferences, 2006 (cit. on p. 15).
[63] E. A. Ok et al., Utility representation of an incomplete preference relation, Journal of Economic Theory,

vol. 104, no. 2, pp. 429–449, 2002 (cit. on pp. 15, 16).
[64] S. O. Hansson and T. Grüne-Yanoff, Preferences, The Stanford Encyclopedia of Philosophy, E. N. Zalta,

Ed., Spring 2022, Metaphysics Research Lab, Stanford University, 2022 (cit. on pp. 15, 80).
[65] A. Sen, Maximization and the act of choice, Econometrica, vol. 65, 1997 (cit. on p. 15).
[66] J. J. Thomson, Killing, letting die, and the trolley problem. The Monist, vol. 59 2, pp. 204–17, 1976 (cit. on

p. 16).
[67] A. N. Kulkarni, H. Luo, N. O. Leslie, C. A. Kamhoua, and J. Fu,Deceptive labeling: Hypergames on graphs

for stealthy deception, IEEE Control Systems Letters, vol. 5, no. 3, pp. 977–982, 2020 (cit. on pp. 16, 35).
[68] A. N. Kulkarni, M. S. Cohen, C. A. Kamhoua, and J. Fu, Integrated resource allocation and strategy

synthesis in safety games on graphs with deception, 2023 (cit. on p. 16).
[69] A. N. Kulkarni and J. Fu, Synthesis of deceptive strategies in reachability games with actionmisperception,

2020 (cit. on p. 16).
[70] A. Kulkarni and J. Fu, Opportunistic synthesis in reactive games under information asymmetry, 2019

IEEE 58th Conference on Decision and Control (CDC), pp. 5323–5329, 2019 (cit. on p. 16).
[71] L. Li, H. Ma, A. N. Kulkarni, and J. Fu, Dynamic hypergames for synthesis of deceptive strategies with

temporal logic objectives (under review), 2020 (cit. on p. 16).
[72] A. Kulkarni and J. Fu, Opportunistic qualitative planning in stochastic systems with incomplete prefer-

ences over reachability objectives, 2023 American Control Conference (ACC), pp. 3541–3547, 2022 (cit.
on p. 16).

[73] B. Gharesifard and J. Cortés, Stealthy Deception in Hypergames Under Informational Asymmetry, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 6, pp. 785–795, Jun. 2014 (cit. on
p. 17).

[74] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, Algorithms for omega-regular games with
imperfect information, Logical Methods in Computer Science, vol. 3, 2007 (cit. on p. 17).

[75] E. Filiot, N. Jin, and J.-F. Raskin, Antichains and compositional algorithms for ltl synthesis, Formal Meth-
ods in System Design, vol. 39, pp. 261–296, 2011 (cit. on p. 17).

98

https://api.semanticscholar.org/CorpusID:11117872
https://api.semanticscholar.org/CorpusID:11117872
https://api.semanticscholar.org/CorpusID:232380040
https://api.semanticscholar.org/CorpusID:5202282
https://api.semanticscholar.org/CorpusID:212703800
https://api.semanticscholar.org/CorpusID:252715763
https://api.semanticscholar.org/CorpusID:252715763
http://dx.doi.org/10.1109/TSMC.2013.2277695

BIBLIOGRAPHY

[76] A. N. Kulkarni and J. Fu, A Compositional Approach to Reactive Games under Temporal Logic Specifica-
tions, American Control Conference, IEEE, 2018, pp. 2356–2362 (cit. on pp. 17, 63).

[77] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008 (cit. on pp. 19, 35, 36, 71, 88).
[78] Z. Manna and A. Pnueli, A hierarchy of temporal properties (invited paper, 1989), Proceedings of the

ninth annual ACM symposium on Principles of distributed computing, 1990, pp. 377–410 (cit. on p. 22).
[79] R. Pı́bil, V. Lisỳ, C. Kiekintveld, B. Bošanskỳ, and M. Pěchouček, Game theoretic model of strategic

honeypot selection in computer networks, International Conference on Decision and Game Theory for
Security, Springer, 2012, pp. 201–220 (cit. on p. 25).

[80] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe, Computing optimal randomized
resource allocations for massive security games, Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1, 2009, pp. 689–696 (cit. on p. 25).

[81] K. E. Heckman, F. J. Stech, R. K. Thomas, B. Schmoker, and A. W. Tsow, Cyber denial, deception and
counter deception, Advances in Information Security, vol. 64, 2015 (cit. on p. 29).

[82] W. Bai and J. Bilmes, Greed is still good: Maximizing monotone submodular+ supermodular (bp) func-
tions, International Conference on Machine Learning, PMLR, 2018, pp. 304–313 (cit. on pp. 37, 40).

[83] R. A. Rosenbaum, Sub-additive functions, Duke Mathematical Journal, vol. 17, no. 3, pp. 227–247, 1950
(cit. on p. 38).

[84] E. Hille and R. S. Phillips, Functional analysis and semi-groups. American Mathematical Soc., 1996,
vol. 31 (cit. on p. 38).

[85] V. V. Vazirani, Approximation algorithms, Approximation Algorithms, 2001 (cit. on p. 39).
[86] S. Jajodia, V. Subrahmanian, V. Swarup, and C. Wang, Cyber Deception. Springer, 2016 (cit. on p. 47).
[87] J. Bernet, D. Janin, and I. Walukiewicz, Permissive strategies: From parity games to safety games, RAIRO-

Theoretical Informatics and Applications-Informatique Théorique et Applications, vol. 36, no. 3, pp. 261–
275, 2002 (cit. on p. 50).

[88] V. Švábenský, P. Čeleda, J. Vykopal, and S. Brišáková, Cybersecurity knowledge and skills taught in
capture the flag challenges, Computers & Security, vol. 102, p. 102 154, 2021 (cit. on p. 55).

[89] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons Inc., 2005 (cit. on p. 66).

[90] S. Myagmar, A. J. Lee, and W. Yurcik, Threat modeling as a basis for security requirements, Symposium
on requirements engineering for information security (SREIS), Citeseer, vol. 2005, 2005, pp. 1–8 (cit.
on p. 67).

[91] D. Fudenberg and J. Tirole, Game theory. 1991 (cit. on p. 69).
[92] J. K. Goeree, C. A. Holt, and T. R. Palfrey, Stochastic game theory for social science: A primer on quantal

response equilibrium, Handbook of Experimental Game Theory, pp. 8–47, 2020 (cit. on p. 69).
[93] M. Kwiatkowska, G. Norman, and D. Parker, Stochastic model checking, Formal Methods for the Design

of Computer, Communication and Software Systems: Performance Evaluation (SFM’07), M. Bernardo
and J. Hillston, Eds., ser. LNCS (Tutorial Volume), vol. 4486, Springer, 2007, pp. 220–270 (cit. on p. 71).

[94] M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Verification of probabilistic real-time systems,
Proc. 23rd International Conference on Computer Aided Verification (CAV’11), G. Gopalakrishnan and
S. Qadeer, Eds., ser. LNCS, vol. 6806, Springer, 2011, pp. 585–591 (cit. on p. 71).

[95] L. Li and J. Fu, Topological approximate dynamic programming under temporal logic constraints, 2019
IEEE 58th Conference on Decision and Control (CDC), Dec. 2019, pp. 5330–5337 (cit. on p. 71).

99

http://dx.doi.org/10.1215/S0012-7094-50-01721-2
https://api.semanticscholar.org/CorpusID:834161
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.102154
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.102154
http://dx.doi.org/10.1109/CDC40024.2019.9029959

BIBLIOGRAPHY

[96] A. M. Polansky, Detecting change-points in markov chains, Computational statistics & data analysis,
vol. 51, no. 12, pp. 6013–6026, 2007 (cit. on p. 72).

[97] M. Basseville, I. V. Nikiforov, et al., Detection of abrupt changes: theory and application. Prentice Hall
Englewood Cliffs, 1993, vol. 104 (cit. on p. 72).

[98] M. L. Littman, T. L. Dean, and L. P. Kaelbling, On the complexity of solving markov decision problems,
arXiv preprint arXiv:1302.4971, 2013 (cit. on p. 77).

[99] D. Bouyssou, D. Dubois, and M. Pirlot, Concepts & Methods of Decision-Making. John Wiley & Sons
Inc., 2009 (cit. on p. 79).

[100] S. O. Hansson, The structure of values and norms. Cambridge University Press, 2001 (cit. on p. 80).
[101] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata theory, languages, and compu-

tation, Acm Sigact News, vol. 32, no. 1, pp. 60–65, 2001 (cit. on p. 82).
[102] G. R. Santhanam, S. Basu, and V. Honavar, Representing and reasoning with qualitative preferences:

Tools and applications. Springer, 2016 (cit. on p. 84).
[103] M. Kloetzer and C. Belta, A fully automated framework for control of linear systems from temporal logic

specifications, IEEE Transactions on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008 (cit. on p. 85).
[104] K. Chatterjee and T. A. Henzinger, A survey of stochastic ω-regular games, Journal of Computer and

System Sciences, vol. 78, no. 2, pp. 394–413, 2012 (cit. on p. 86).

100

	Abstract
	Acknowledgements
	Introduction
	Aim of this Dissertation
	Contributions of this Dissertation.

	Background on Game and Hypergame Theory
	Games on Graphs
	Temporal Logic and Automata
	Hypergame Theory

	Synthesis with Misperception of Labeling Function
	Effect of Labeling Misperception
	Static Hypergame on Graph
	Stealthy Deceptive Sure Winning Strategy
	Stealthy Deceptive Almost-Sure Winning Strategy

	Decoy Allocation Problem
	Modeling and Problem Formulation
	P2's Subjectively Rationalizable Strategy
	Stealthy Deceptive Sure Winning Strategy
	Stealthy Deceptive Almost-Sure Winning Strategy
	Compositional Synthesis for Decoy Placement
	Experimental Evaluation

	Synthesis with Misperception of Action Capabilities
	Effect of Action Misperception
	Dynamic Hypergame on Graph
	P2's Subjectively Rationalizable Strategy
	Deceptive Sure Winning Strategy
	Deceptive Almost-Sure Winning Strategy

	Case Study: Capture-the-Flag Game on Gridworld

	Synthesis with Misperception of Specifications
	Opportunistic Strategies in Games with Specification Misperception
	Effect of Specification Misperception on Ignorant P2
	Static Hypergame on Graph
	Characterization of State Space
	Synthesis of Opportunistic Strategy
	Case Study: Robot Motion Planning

	Deceptive Strategies under Specification Misperception
	Effect of Specification Misperception on Informed P2
	Dynamic Hypergame on Graph
	Synthesis of Deceptive Strategy
	Case study: Robot Motion Planning

	Planning with Incomplete Preferences over Temporal Goals
	PrefScLTL: A Language to Specify Preferences over Temporal Objectives
	Preference Automaton
	Solution Concepts
	Synthesis of Opportunistic Preference Satisfying Strategies
	Example: Robot Motion Planning in Stochastic Gridworld

	Conclusion and Perspectives
	Achievements and Perspectives
	Future Work

	Bibliography

