
SEQUENTIAL DECISION MAKING IN GAMES WITH INCOMPLETE INFORMATION

By

ABHISHEK NINAD KULKARNI

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2023

© 2023 Abhishek Ninad Kulkarni

2

To my family

3

ACKNOWLEDGEMENTS

I want to begin by expressing my deepest gratitude to my advisor, Prof. Jie Fu. Over the

course of the past six years, she has been an exceptional guide and source of inspiration. Prof. Fu

has consistently encouraged me to pursue my research interests with unwavering support,

enabling me to delve into a diverse array of topics, ranging from theoretical concepts in game

theory and formal methods to the practical realms of cybersecurity and robotics. Her dedication

to helping me find my own unique voice as a researcher has been pivotal to my growth throughout

my PhD journey. I am indebted to her for her meticulous feedback on my work and our

thought-provoking discussions, which have been marked by originality, precision, and

enlightening insights.

I would like to thank the members of my dissertation committee, Prof. Sean Meyn, Prof.

Tuba Yavuz, and Prof. Yu Wang, and the members of my PhD qualifying exam committee, Prof.

Carlo Pinciroli from Worcester Polytechnic Institute and Dr. Mitchell Colby from Scientific

Systems Company Inc. Their insights and advice have been valuable in shaping the course of my

academic journey.

I extend my heartfelt appreciation to all my coauthors, including Dr. Charles A. Kamhoua,

Dr. Nandi O. Leslie, Prof. Shuo Han, Dr. Hazhar Rahmani, Dr. Lening Li, Haoxiang Ma,

Sumukha Udupa, Matthew Cohen, Huan Luo, Yash Shukla, Dr. Robert Wright, Dr. Alvaro

Velasquez, Dr. Jivko Sinapov, Dr. Siddharth Patki, Dr. Satish R. Inamdar, Prof. Madhuri Joshi,

and Prof. Anita S. Joshi. Their invaluable contributions and the enlightening discussions we

shared were instrumental in bringing my research to fruition. Collaborating with Dr. Kamhoua

was a truly delightful experience, and I gained countless insights into the domain of

cyber-physical systems security through our discussion. I am deeply grateful for his steadfast

support of my research and his invaluable mentorship. I am deeply indebted to Prof. Inamdar,

who played a pivotal role in acquainting me with the domain of research and introducing me to

the concept of cyber-physical systems. This introduction served as the underpinning for the

research that forms the core of this dissertation.

4

I express my gratitude to the members of the Control and Intelligent Robotics Lab (CIRL)

for enriching my research journey with their engaging discussions on intriguing new challenges.

Their close-knit collaboration has made our research dialogues not only productive but also

enjoyable. I am also grateful to the wonderful conferences that I have had the privilege to attend,

including the Conference on Decision and Control (CDC), American Control Conference (ACC),

International Joint Conference on Artificial Intelligence (IJCAI), Conference on Decision and

Game Theory for Security (GameSec), and International Conference on Robotics and Automation

(ICRA). These conferences have provided me with invaluable opportunities to engage with

leading researchers in my field.

My family has been an endless source of love, affection, support and motivation for me. My

father, Ninad Kulkarni, has been instrumental in igniting my passion for mathematics and

research, my mother, Snehal Kulkarni, gave me the most important lesson in life, that of handling

failures, and my wife, Sanika Patki, has been a source of great emotional support and

encouragement during the ups and downs of the PhD life. It is the blessings and belief of my

grandparents in my abilities through the years that has given me the strength to pursue my

dreams, even at times when they seemed unrealizable.

I extend my heartfelt gratitude to Prof. Prakash Mulbagal, my mathematics mentor at M.

Prakash Academy in Pune, India. Under his guidance, my passion for mathematics was nurtured,

and he inspired me to set forth on the trajectory towards a career in research and development.

Perhaps the most profound lesson imparted by Prakash Sir was the philosophy of effective

learning, serving as the bedrock upon which I embarked on my journey in the fields of

mathematics and science. This journey ultimately culminated in the research presented in this

dissertation.

I would also like to express my gratitude to Prof. Milind Patwardhan, Prof. Pushkar

Joglekar, Prof. Milind Kamble, and Prof. Mrunal Shidore for their mentorship, encouragement,

and unwavering support. Their guidance has played a pivotal role in my transformation from

being solely an admirer of theoretical concepts to someone who also values the practical

5

implications of theory. Engaging in conversations with Prof. Patwardhan about the practical

intricacies of robot functionality and concurrently discussing the theoretical facets of motion

planning with Prof. Joglekar struck the perfect balance which motivated me to not only delve into

theory or practice but also to bridge the gap between them. This approach laid the foundation for

my thought process. I’d also like to extend my appreciation to Monica Patel, Aditya Joshi, and

Shruti Phadke for their numerous insightful discussions and enjoyable moments, which not only

contributed to my personal growth but also provided vital support during challenging personal

trials.

In the course of the last seven years, I have been exceptionally fortunate to discover a

close-knit community among the friends I made in the United States, including Krunal

Chaudhari, Kritika Iyer, Ankur Agrawal, Anand Parwal, Aashima Parwal, Adhavan Jayabalan,

Kenechukwu Mbanisi, Ishita Ankit, and Shubham Jain. From the philosophical discussions on the

existence of God to contemplating the future of robotics and AI, our conversations have spanned a

wide spectrum of topics that have profoundly impacted on my approach to research. This group

has become like a second family to me, and it’s thanks to them that my PhD journey has been an

overwhelmingly positive experience.

Last but not the least, I want to thank my funding sources, DARPA, ARL, NSF, and Dr.

Glenn Yee Scholarship, for supporting my PhD.

6

TABLE OF CONTENTS
page

ACKNOWLEDGEMENTS . 4

LIST OF TABLES. 9

LIST OF FIGURES. 10

LIST OF ALGORITHMS . 11

ABSTRACT . 12

CHAPTER

1 INTRODUCTION . 14

1.1 Aim of this Dissertation . 18
1.2 Contributions of this Dissertation. 24

2 BACKGROUND ON GAME AND HYPERGAME THEORY . 29

2.1 Games on Graphs . 29
2.2 Temporal Logic and Automata. 35
2.3 Hypergame Theory . 36

3 SYNTHESIS WITH MISPERCEPTION OF LABELING FUNCTION 39

3.1 Effect of Labeling Misperception . 39
3.2 Static Hypergame on Graph . 41

3.2.1 Stealthy Deceptive Sure Winning Strategy . 42
3.2.2 Stealthy Deceptive Almost-Sure Winning Strategy . 44

3.3 Decoy Allocation Problem . 46
3.3.1 Modeling and Problem Formulation . 46
3.3.2 P2’s Subjectively Rationalizable Strategy . 48
3.3.3 Stealthy Deceptive Sure Winning Strategy . 52
3.3.4 Stealthy Deceptive Almost-Sure Winning Strategy . 55
3.3.5 Compositional Synthesis for Decoy Placement . 60
3.3.6 Experimental Evaluation. 66

4 SYNTHESIS WITH MISPERCEPTION OF ACTION CAPABILITIES 74

4.1 Effect of Action Misperception . 74
4.2 Dynamic Hypergame on Graph . 76

4.2.1 P2’s Subjectively Rationalizable Strategy . 79
4.2.2 Deceptive Sure Winning Strategy . 81
4.2.3 Deceptive Almost-Sure Winning Strategy. 82

4.3 Case Study: Capture-the-Flag Game on Gridworld . 87

7

5 SYNTHESIS WITH MISPERCEPTION OF SPECIFICATIONS . 92

5.1 Opportunistic Strategies in Games with Specification Misperception. 92
5.1.1 Effect of Specification Misperception on Ignorant P2. 92
5.1.2 Static Hypergame on Graph. 94
5.1.3 Characterization of State Space . 95
5.1.4 Synthesis of Opportunistic Strategy . 98
5.1.5 Case Study: Robot Motion Planning. 102

5.2 Deceptive Strategies under Specification Misperception. 106
5.2.1 Effect of Specification Misperception on Informed P2 . 106
5.2.2 Dynamic Hypergame on Graph . 107
5.2.3 Synthesis of Deceptive Strategy . 109
5.2.4 Case study: Robot Motion Planning . 114

6 PLANNING WITH INCOMPLETE PREFERENCES OVER TEMPORAL GOALS 123

6.1 PrefScLTL: A Language to Specify Preferences over Temporal Objectives 123
6.2 Preference Automaton . 126
6.3 Solution Concepts . 131
6.4 Synthesis of Opportunistic Preference Satisfying Strategies . 133
6.5 Example: Robot Motion Planning in Stochastic Gridworld . 139

7 CONCLUSION AND PERSPECTIVES . 142

7.1 Achievements and Perspectives . 142
7.2 Future Work . 144

LIST OF REFERENCES . 146

BIOGRAPHICAL SKETCH . 153

8

LIST OF TABLES
Tables page

4-1 Comparison of deceptive and non-deceptive winning states under sure and almost-sure
winning condition for P1’s objective ϕ1 = ♢FLAG1∧♢FLAG2. 91

4-2 Comparison of deceptive and non-deceptive winning states under sure and almost-
sure winning condition for P1’s objective ϕ2 = ((¬FLAG2 ∧ ¬collide)Ua) ∧
(collideUFLAG2).. 91

5-1 Partition of game state-space due to information asymmetry. 103

5-2 A decision table for state (((0,2),(4,2),0),1,1) with value 285.03 and strategy to
choose action N. 104

5-3 The completion rates for P1 in asymmetric information case and symmetric information
case in world1. 119

6-1 Number of states from which the robot has a safe and positively improving and safe and
almost-surely improving strategies to make at least 1 or at least 2 improvements.. 139

9

LIST OF FIGURES
Figures page

3-1 Base game considered in the running example. 49

3-2 Perceptual games when the state s7 is a fake target. 53

3-3 Hypergame on graph constructed based on P1 and P2’s perceptual games. 56

3-4 A scenario where DASWin1(X ,Y)⊊ DASWin1(X ,Y). 60

3-5 Gridworld example with Tom and Jerry with 2 cheese blocks. 67

3-6 The value of deception obtained by placing traps and fake targets under stealthy decep-
tive sure and almost-sure winning conditions in four selected games. 71

3-7 The values of deception compared by algorithm in each of the two iterations to determine
the two decoys for scenarios (A)-(C). 73

4-1 An example game on graph. 78

4-2 Perceptual game of P2 when P2 misperceives P1’s action set to be X0 = {a2}. 79

4-3 The dynamic hypergame on graph given P1’s and P2’s perceptual games. 80

4-4 An example of capture-the-flag game between P1 (superman) and P2 (devil) played over
a 5×5 grid world. 87

4-5 The deterministic finite automatons equivalent to the scLTL formulas. 91

5-1 State space characterization.. 97

5-2 Game arena. 103

5-3 The automaton for ¬O U X , where X ∈ {A,B}. 104

5-4 Two configurations of gridworld considered in the examples.. 117

5-5 The task automaton. 117

5-6 Three key steps of deception in the simulation. 120

5-7 The task completion rates of P1 given P2 with k-step delay in reallocating traps, for
k = 0,1,2,3.. 121

5-8 The likelihood ratio λ for online interaction between P1 and P2. 122

6-1 Toy example to illustrate the limitation of almost-sure winning solution concept for
preference-based planning. 131

6-2 A gridworld example in which the black arrows with no-entry symbol denote the dis-
abled actions from that state and green arrows show the random outcomes on entering
the cell. 140

10

LIST OF ALGORITHMS
Algorithms page

2-1 Zielonka’s recursive algorithm to compute sure winning region in a reachability game. . . 34

3-1 Greedy algorithm for decoy placement. 66

4-1 Deceptive almost-sure winning region for P1. 85

5-1 Computation of P1’s subjectively rationalizable strategy.. 114

6-1 Construction of preference graph . 127

6-2 Level set for constructing safe and almost-surely improving strategy. 137

11

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SEQUENTIAL DECISION MAKING IN GAMES WITH INCOMPLETE INFORMATION

By

Abhishek Ninad Kulkarni

December 2023

Chair: Jie Fu
Major: Electrical and Computer Engineering

Sequential decision-making in non-cooperative games is an indispensable skill for

autonomous agents to achieve complex temporal objectives in dynamic, uncontrolled

environments in presence of other strategic agents. This dissertation studies the problem of

synthesizing winning strategies in games with incomplete information played on graphs—a class

of games that has received limited attention, yet holds significant implications in domains such as

robotics, economics, and artificial intelligence.

We investigate the synthesis problem under two kinds of incomplete information. In

two-player games, we consider situations where an adversary (P2) has incomplete information

about the action capabilities or objectives of the agent (P1) or how P1 interprets the history of

their interaction. We show that, in such situations, P1 may synthesize a deceptive strategy to

satisfy its omega-regular objective that exploits P2’s incomplete information to gain a strategic

advantage. However, the effectiveness of a deceptive strategy depends on the level of awareness

of P2 about its incomplete information.

We develop hypergame theory for games on graphs by introducing two models: static and

dynamic hypergames on graphs, which model situations where P2’s information remains constant

or evolves during the interaction. These models capture interactions where both players play

according to their subjective views of their interaction constructed using the information they

know. We introduce new solution concepts to analyze the rational behavior of players within

hypergames, based on which we identify the conditions for the use of deception to be

12

advantageous for P1 and design algorithms to synthesize the deceptive winning strategies under

various assumptions on P2’s incomplete information.

In single-player stochastic games, we study planning with incomplete preferences over

omega-regular objectives, where the player may lack information about its own preferences.

Decision-making is challenging in this setting because incomplete preferences do not always

admit a utility representation, which renders classical decision theory inapplicable. We introduce

a novel framework for planning with incomplete preferences over linear temporal logic objectives

that include a preference language, an automata-theoretic computational model, and algorithms to

synthesize preference-satisfying strategies under two new solution concepts.

13

CHAPTER 1
INTRODUCTION

The ability of sequential decision making is central to human cognition. It enables

individuals to tackle intricate problems, adapt to dynamic environments, interact effectively with

others, manage risks, and work toward long-term goals by making a series of interconnected

choices. For instance, in a game of chess, a player determines their next move by anticipating

multiple rounds of moves and potential counter-moves of their opponent. As autonomous agents

become an integral part of human society, it is imperative for these agents to exhibit proficiency in

making competent and strategic sequential decisions.

Game theory provides a theoretical framework to study sequential decision making

problems. It focuses on the analysis of rational decision making of agents involved in strategic

interactions within a stochastic environment in presence of other strategic and self-interested

agents. Game theory offers a suite of mathematical tools, including models that can capture

interactions between one or more players under various scenarios, and solution concepts that

define the conditions on what constitutes rational behavior for players within the game. For

instance, the simplest class of games called normal-form games consist of “one-step” games, in

which players select their strategies simultaneously, and the outcomes are determined by a payoff

matrix specifying the payoffs associated with all possible strategy combinations. The game ends

once the players choose their actions. However, a considerable subset of games evolve over time

and in a stateful manner, and the payoffs received by the players depend on the history of

interactions. In such games, the ability of players to make strategic sequential decisions is crucial

to achieve a desirable outcome.

Games on graphs. A game played on a graph (for short, a game on graph) is a model used to

study sequential interactions between one or more players that evolve over time in a stateful

manner. They have garnered significant attention in various domains, including cybersecurity

[1, 2, 3, 4], adversarial robot motion planning [5, 6], and discrete event systems [7, 8], among

others. These games can represent non-terminating interactions that evolve indefinitely,

14

advancing through an unbounded number of rounds. Within this model, each game state

corresponds to a node within the graph, and during each round, players make strategic choices

that trigger transitions to successor nodes through edges. An outcome of these non-terminating

games is represented by the infinite path in the graph defined by the strategies of the players. In

this dissertation, we focus on reachability and safety ω-regular games on graphs [9], i.e., the class

of games in which players’ objectives are characterized by an ω-regular language. A language

containing infinite words is ω-regular if it can be expressed by a finite Büchi automaton.

Specifically, we reachability consider objectives specified using a fragment of Linear Temporal

Logic (LTL) called syntactically cosafe LTL (scLTL) [10], which can express ω-regular

languages representable by a terminal Büchi automaton, and safety objectives specified using

LTL, which can express ω-regular languages representable by a monitor.

Types of games. Games are categorized into four types based on two factors: whether all

players have perfect information, and whether all players have complete information. In a game

with imperfect information [11, 12], one or more players have partial or limited knowledge about

the history of game states or the actions executed by other players. The models such as Partially

Observable Markov Decision Processes (POMDPs) [13] and Partially Observable Stochastic

Games (POSGs) [14] are noteworthy examples of games on graphs with imperfect information.

On the other hand, in a game with incomplete information [11, 15], one or more players

have partial or limited knowledge about at least one of the following components of the game: (a)

players’ action capabilities, (b) players’ objectives, (c) the game rules, (f) what one player knows

about the other player, and what the other player knows about the information known to the first

player, and so on When a player’s knowledge is incomplete regarding their own capabilities or

objectives, the incompleteness in the game is termed as interoceptive. In contrast, when a player’s

knowledge is incomplete concerning the external environment, encompassing aspects such as

game rules, other players’ capabilities, or objectives, it is referred to as exteroceptive.

15

The synthesis problem. A central problem about games on graphs is to synthesize winning

strategies for a player. A strategy is said to be winning if following it guarantees that the player

will satisfy its ω-regular objective regardless of the strategies employed by other players.

However, the notion of “winning” in games on graphs varies depending on which solution

concept is used to analyze the game. In this research, we focus on the qualitative solution

concepts of sure, almost-sure, and positive winning [9]. A sure winning strategy guarantees the

player that its objective will be accomplished in a finite number of steps. An almost-sure winning

strategy provides the player with the assurance of achieving their objective with a probability one,

while a positive winning strategy assures the player that its objective will be realized with a

positive probability.

Literature on games on graphs with exteroceptive incomplete information. The synthesis

problem has received significant attention in theoretical computer science and control systems for

the class of games on graphs with perfect or imperfect, but complete, information. In analyzing

these games, three questions are considered to be fundamental. First, whether the game is

determined, i.e., whether one of the players has a strategy to win (i.e., satisfy its ω-regular

objective) regardless of the strategy employed by the opponent? Determinacy is valuable in

solving the synthesis problem because it allows for transitioning between the viewpoints of the

two players: For example, if P1 does not have a winning strategy from a state, then the

determinacy property guarantees that P2 has a winning strategy from that state. Interested readers

may find a detailed discussion on determinacy in [16]. Second, does there exist an algorithm to

characterize state space, i.e., to identify which player wins from a given state? This assists in

designing winning strategies; for example, a winning strategy to satisfy a safety objective must

reject any action that leads to an opponent’s winning state. Lastly, does there exists an algorithm

to synthesize the winning strategy for a player from each of its winning states. If yes, then what is

the computational complexity of such an algorithm?

16

Games on graphs with perfect and complete information. The answers to the above

questions depend largely on the class of game on graph and the solution concept being

considered. In case of games on graphs with perfect and complete information, it is known that

the deterministic as well as stochastic turn-based variants are qualitatively determined [17], but

their concurrent counterparts are not1 [19, 20]. Regarding the characterization of state space, the

solution concepts of sure and almost-sure winning are known to coincide for the deterministic

turn-based games. This means that the set of winning states for either of the players remains the

same regardless of which solution concept is employed to analyze the game. This is not the case

with either stochastic turn-based games or concurrent games. In fact, for concurrent games, the

strategies that use randomization are more powerful than the deterministic (i.e., pure) strategies

[9]. Therefore, the number of winning states for one player may be greater under almost-sure

winning concept when compared to that under sure winning. Lastly, the algorithms to synthesize

winning strategies are known for most sub-classes of games on graphs with perfect and complete

information. A few noteworthy algorithms include the linear-time algorithm for ω-regular

reachability games [21], and polynomial-time algorithms for stochastic turn-based games and

concurrent games with both qualitative reachability and more general parity objectives, as

discussed in [9, 19].

Games on graphs with imperfect but complete information. Seminal works by Reif [22, 12]

established the foundational framework for studying games on graphs with imperfect information.

In these seminal works, Reif introduced a subset construction methodology to transform games

with imperfect information into those characterized by perfect and complete information. This

approach established the way for synthesizing winning strategies under the sure winning concept,

specifically for the deterministic turn-based games on graphs. Subsequently, research

demonstrated that all turn-based and concurrent games with imperfect information are determined

when players employ randomized strategies, but are not determined when deterministic strategies

1 Note that stochastic concurrent games exhibit quantitative determinacy but lack qualitative determinacy. Quantita-
tive determinacy involves computing the maximal probability with which a player can win in the limit from each
state [18].

17

are employed. The subset construction, however, results in an exponential blowup of state space,

resulting in the majority of algorithms for synthesizing winning strategies in these games to have

at least exponential time and space complexity. The synthesis algorithms were first presented for

partially observable Markov decision processes (POMDP), which represent a class of

single-player games with imperfect information. Subsequently, a series of works [23, 24, 25]

expanded these algorithms to address two-player games on graphs involving one-sided imperfect

information. Recently, Bertrand et al. [16] introduced a doubly exponential algorithm for games

featuring two-sided partial observation, while Gripon and Serre [26] extended these findings to

encompass games where players may not observe the history of actions in addition to the history

of states.

1.1 Aim of this Dissertation

In contrast to games on graphs with either perfect or imperfect information, sequential

decision making in games on graphs with incomplete information has received little attention.

The aim of this dissertation is to address this gap. Let us first understand the reason behind this

gap by reviewing the literature on normal-form and extensive games with incomplete information.

Games on graphs with incomplete but perfect information. Two models are commonly used

to represent games with incomplete information: Bayesian games [11] and hypergames [27].

Among these, Bayesian games are widely recognized as the standard model of games with

incomplete information in game theory. This can be attributed to the foundational work by

Harsanyi [28], in which he argued that any game with incomplete information can be equivalently

transformed into a game with imperfect (but complete) information. The transformation entails

assigning a type to each player in a game with incomplete information, where the type

corresponds to their private information. Subsequently, assuming that all players know the set of

potential types, the players maintain a subjective probability distribution over this set. During

interaction, they update this distribution based on observations to infer the true type from the

history of a player’s decisions. To establish the initial distribution, Harsanyi’s framework relies on

the critical assumption that all players share a common prior distribution. In their seminal work,

18

Mertens and Zamir [29] relaxed this assumption by introducing the notion of a universal belief

space. This work established that Harsanyi’s model can indeed represent all kinds of games with

incomplete information. The development of the Bayesian games model for repeated games,

which represents a class of sequential interactions consisting of a number of repetitions of the

same base game, was introduced by Aumann et al. [30]. There are three widely studied solution

concepts for Bayesian games: The Bayesian Nash equilibrium [31] extends the concept of Nash

equilibrium to normal-form games with incomplete information. The correlated equilibrium [30]

represents the Nash equilibrium of a game extended by the inclusion of random events, about

which players possess partial information. The perfect Bayesian equilibrium (PBE) [32] refines

the Bayesian Nash equilibrium, particularly tailored for extensive-form games marked by

incomplete information.

In contrast, hypergames [27] offer a framework capable of modeling games in which some

players may be misinformed of some aspects of their interaction or remain unaware of their own

and other players’ misperceptions. Conceptually, a hypergame integrates the subjective views of

all players about the game. Consequently, players can have distinct perceptions of the game

without necessitating the assumption of common prior knowledge. Both normal-form and

extensive-form versions of hypergames have been extensively explored in the literature

[33, 34, 35], particularly within contexts of conflicts [36, 37, 38] and deception

[39, 40, 35, 41, 42]. Several solution concepts have been proposed for hypergames including the

Nash equilibrium, hyper-Nash equilibrium, Fraser-Hipel equilibrium, Stackelberg equilibrium,

and subjective rationalizability [33, 43]. An in-depth discussion about various solution concepts

and relations among them is studied in [33].

Challenges to study games on graphs with incomplete information. Although, theoretically,

Bayesian games can model every kind of incompleteness, we argue that they might not be the best

choice to study the synthesis problem in games on graphs with incomplete information. We

highlight three reasons for our hypothesis.

19

First, the assumption that the set of possible types is common knowledge for all players is

unreasonable in many situations, especially those involving conflicts [41] or unawareness [44].

This assumption, in addition to the assumption of common prior, have been widely debated in

economics and game theory communities [45, 46]. For instance, in cybersecurity, an attacker may

not be aware about defender’s use of honeypatches, which are patched vulnerabilities that appear

like unpatched vulnerabilities to the attacker [47]. In this situation, the attacker cannot know the

possible types of defenders.

Second, in the games where common prior assumption does not hold, the existing solution

concepts for Bayesian games provide limited insight [48]. This is highlighted by the

transformation from a hierarchical hypergame to a Bayesian game proposed by Sasaki and Kijima

[48]. Through this transformation, the authors show that the solution concept of subjective

rationalizability in hypergame coincides with that of Bayesian Nash equilibrium in its Bayesian

representation, and the best response equilibrium in hypergame corresponds to Nash equilibrium

in its Bayesian representation. However, the equivalent counterparts of the hypergame solution

concepts such as Fraser-Hipel equilibrium [49, 50], or hyper-Nash equilibrium [51, 52] are not

known.

Lastly, Harsanyi’s approach to transform a game with incomplete information into one with

imperfect information might not be effective for games on graphs due to the complexity of

solving games on graphs with imperfect information. Last but not the least, the Bayesian games

are inherently quantitative in nature and, therefore, are not best suited for solving the synthesis

problem using qualitative solution concepts.

A large part of this dissertation is dedicated to developing the hypergame theory for

two-player games on graphs, in which the ego player, P1, is aware that its adversary, P2, lacks

knowledge about some component of the game. Formally, the first of the two research questions

posed in this dissertation is stated as follows.

20

Research Question I

In a two-player game on graph with one-sided incomplete information, where P1 has com-

plete and P2 has incomplete information, how to synthesize strategies for P1 that are

provably-correct with respect to given ω-regular specifications and which leverage P1’s

knowledge about P2’s incomplete information to gain strategic advantage over P2?

Literature on games on graphs with interoceptive incomplete information. In games with

interoceptive incomplete information, players lack full knowledge of their own capabilities or

objectives. This dissertation focuses on a specific category of single-player stochastic games on

graph, also known as Markov Decision Process (MDP). In these games, the objective is to

synthesize a strategy that achieves the most desirable goal, considering an incomplete preference

over a set of ω-regular reachability objectives. A preference relation over a set of alternatives is

said to be complete if the ordering between every possible pair is alternatives is well-defined. In

other words, the preference relation can compare and rank any pair of alternatives and make a

clear decision based on their preferences [53]. On the other hand, as preference relation is said to

be incomplete if the relation is unable to rank or compare certain alternatives. The problem of

making rational decisions to achieve most desirable goals given a preference relation is studied

widely in the domain of preference-based planning [54].

Literature on preference-based planning. The literature on preference-based planning can be

classified into four parts based on the whether the preference relation is complete or incomplete,

and whether the environment is deterministic or stochastic. Planning with preferences over

temporal goals in deterministic environment is a well-studied problem for both complete and

incomplete preferences (see [54] for a survey). For preferences specified over temporal goals, the

authors in [55] proposed a logical language for specifying preferences over the evolution of states

and actions to synthesize a deterministic plan while the works [56, 57, 58] explored the minimum

violation planning approaches that decide which low-priority constraints should be violated in a

deterministic system, when not all objectives can be satisfied simultaneously. Mehdipour et

21

al. [59] associate weights with Boolean and temporal operators in signal temporal logic to specify

the importance of satisfying the sub-formula and priority in the timing of satisfaction. This

reduces the preference-based planning problem to maximizing the weighted satisfaction in

deterministic dynamical systems.

However, the solutions to the preference-based planning problem for deterministic systems

cannot be applied to stochastic systems. This is because, sequential decision making with

preferences requires the agent to transform a preference over a set of high-level temporal goal into

a preference over strategies. Thus, by following the most-preferred strategy, the player would be

guaranteed to achieve the most desirable goal. Now, in stochastic environments, even a

deterministic strategy yields a distribution over outcomes satisfied by the resulting paths.

Therefore, to determine which strategy is better, we need a way to compare distributions over

paths instead of comparing two paths2, which is what the deterministic planners do.

Several works have studied the preference-based planning problem in stochastic

environments. But almost all of them assume the preferences to be complete. Lahijanian and

Kwiatkowska [60] considered the problem of revising a given specification to improve the

probability of satisfaction of the specification. They formulated the problem as a multi-objective

MDP problem that trades off minimizing the cost of revision and maximizing the probability of

satisfying the revised formula. Li et al [61] solve a preference-based probabilistic planning

problem by reducing it to a multi-objective model checking problem. The only work that studies

the problem of probabilistic planning with incomplete preferences was presented by Fu [62], in

which she introduces the notion of the value of preference satisfaction for planning within a

predefined finite time duration and developed a mixed-integer linear program to maximize the

satisfaction value for a subset of preference relations.

Challenges for sequential decision making with incomplete preferences. The assumption of

completeness has long been recognized to be restrictive [63, 64, 65]. When studying decision

making for autonomous agents, the incompleteness about preferences may arise mainly due to

2 A deterministic strategy in a deterministic environment results in a unique path.

22

two reasons [66]: (i) Tentative incompleteness, which arises from an agent’s inescapability or

urgency of making a decision. For example, an autonomous vehicle must make a decision every

100ms based on whatever knowledge is available at that time, even if it does not have all the

necessary information. (ii) Assertive incompleteness, which arises when the outcomes are

incommensurate in value. That is, the agent lacks a common value function to compare the two

outcomes. For example, in the trolley problem [67], an autonomous agent must decide between

sacrificing one person versus sacrificing 5 people.

Incomplete preferences pose a fundamental challenge to rational decision making. For

complete preferences, any planner based on the classical decision theory determines the “best”

alternative by first constructing a utility representation of the preference and then using

optimization theory to identify the alternative that yields the highest utility. Nevertheless, the

existence of such a utility representation is not assured for incomplete preferences, except in the

special case where the preference relation is continuous [64].

Another unique challenge that arises when investigating sequential decision making with

incomplete preferences is the need to operate with combinative preferences. Combinative

preferences allow the agent to express preferences over alternatives that may not be mutually

exclusive. For example, consider a user preference for a robot that “visiting A is strictly preferred

over visiting B.” The two alternatives, ‘visiting A’ and ‘visiting B,’ are not mutually exclusive

because, for instance, a path that visits A may also visit B. Sequential decision making with

combinative preferences remains relatively unexplored within the existing literature. Given these

challenges, we state the second research question considered in this dissertation.

Research Question II

In a single-player stochastic game on graph, i.e., a Markov decision process, given a set

of outcomes represented as ω-regular objectives, how to synthesize a strategy for P1 to

achieve an outcome that maximally satisfies an incomplete preference over the given set of

outcomes.

23

1.2 Contributions of this Dissertation.

This section provides an overview of the key contributions of this dissertation and outlines

its structure. The material within this dissertation is based upon my previously published papers:

Ch. 3 is based on [68, 4, 69]3, Ch. 4 on [70], Ch. 5 on [71, 72], and Ch. 6 is based on [73].

Ch. 2 surveys the basic definitions of various classes of games, hypergames, objectives,

strategies, and various solution concepts.

Chapters 3-5 are dedicated to addressing Research Question I (RQI) for three sub-classes of

games on graphs with exteroceptive incomplete information. In these games, P1 is presumed to

possess complete information, while P2 might misperceive one of the components of the game.

We categorize these games into three sub-classes based upon the specific game component

misperceived by P2 .

1. Misperception of labeling function: P2 lacks information about P1’s labeling function. This

means the same outcome (i.e., an infinite path) could be interpreted differently by P1 and

P2.

2. Misperception of action set: P2 has incomplete information about P1’s action capabilities.

3. Misperception of specification: P2 has lacks information about the true objective of P1.

One of the key contributions of this dissertation is the development of hypergames theory

for sequential decision making in games on graphs. We introduce two models: a static hypergame

on graph and a dynamic hypergame on graph. The static hypergame represents interactions where

players’ perceptions remain constant throughout the interaction, while the dynamic hypergame

accommodates evolving perceptions of players as private information is revealed. Depending on

the kind of the misperception involved, we introduce four solution concepts.

Ch. 3 investigates RQI when P2 is misinformed about P1’s labeling function. In particular,

Ch. 3.1 studies the synthesis problem when the interaction between P1 and P2 is modeled as a

deterministic two-player turn-based game. The key contributions in this chapter include (i)

3 The content of Ch. 3.3 is based on the paper [69], which is presently under review.

24

Modeling: We show how to model the interaction as hypergame on graph, (ii) Solution concepts:

We extend the notion of stealthy deception, commonly studied for normal-form and

extensive-form games [74], to hypergames on graphs by defining two solution concepts: stealthy

deceptive sure winning and stealthy deceptive almost-sure winning. The strategies synthesized

under these concepts guarantee P1 to satisfy its ω-regular objective within finite number of steps

or with probability one, respectively, while ensuring that P2 does not become aware of the

information asymmetry until P1 can ensure to satisfy the temporal logic specification irrespective

of P2’s actions. These solution concepts for hypergames on graphs not only provide the

provably-correct deceptive strategies for P1 but also provide a way to assess the effectiveness of

deception and its potential limitations. (iii) Synthesis algorithm: We show that synthesizing

winning strategies in the interaction under these concepts is equivalent to solving for sure and

almost-sure winning strategies in the hypergame on graph. Thus, reducing the problem of

synthesizing winning strategies in a game with incomplete information to that in game with

complete and perfect information. (iv) Comparison between the concepts: We establish that may

benefit more from deception when the game is analyzed under stealthy deceptive almost-sure

winning condition as compared to when it is analyzed under stealthy deceptive sure winning

condition.

In Ch. 3.3, we study a joint mechanism design and deceptive strategy synthesis problem. In

this problem, we aim to allocate two types of deception resources, namely, traps and fake targets

to disinform P2 about P1’s true labeling function. In principle, the traps alter the structure of the

game but do not affect P2’s perception, whereas the fake targets manipulate P2’s perception of the

goal states in the game. Thus, by deciding the location of decoys P1 can influence P2’s perception

and, therefore, its behavior. To this end, we first specialize the hypergame on graph introduced in

Ch. 3.2 to model the consequence of P1 allocating a subset of states in the reachability game as

either “traps” or “fake targets” on P2’s perception. Second, we analyze the effect of traps and fake

targets on P2’s behavior when players follow either greedy deterministic strategies, or

randomized strategies. With greedy deterministic strategies, we show that fake targets could be

25

more advantageous than traps. Whereas, with randomized strategies, we find that neither the fake

targets nor the traps provide a greater benefit over the other. Moreover, we observe that the

benefit of using deception is greater when players use greedy deterministic strategies than when

they use randomized strategies. This is a surprising result since, for several classes of games on

graphs, randomized strategies are either equally or more powerful than the deterministic ones

[9, 75]. Finally, we note that the task of determining an optimal placement of decoys that

maximizes the size of the stealthy deceptive sure/almost-sure winning region poses a challenging

combinatorial problem. To address this challenge and develop an algorithm with practical

feasibility, we establish three key properties: (i) We demonstrate that the placement of traps and

fake targets can be treated independently, as fake targets offer at least the same advantages as

traps, (ii) Drawing insights from concepts in compositional synthesis [76, 77], we establish

sufficient conditions under which the objective function (i.e., the size of the stealthy deceptive

sure/almost-sure winning region) exhibits submodularity or supermodularity property, (iii)

Leveraging these findings, we propose a greedy algorithm to incrementally place the decoys. The

algorithm is (1−1/e)-optimal when the objective function is sub- or super-modular. This

approach alleviates the need to exhaustively solve a large number of hypergames for all possible

configurations of decoys.

Ch. 4 investigates the class of deterministic two-player turn-based games on graphs where

P2 has incomplete information about P1’s action capabilities. In this chapter, we introduce a

different hypergame model, called a dynamic hypergame, which allows the perception of players

to evolve during the game. Specifically, when P1 reveals a private action (i.e., an action previously

unknown to P2), P2 updates his perception of P1’s action set and, thereby, his counter-strategy. In

this setting, we consider the synthesis of a deceptive sure-winning strategy, i.e., the strategy using

which P1 can enforce satisfaction of its ω-regular reachability objective in finitely many steps by

strategically revealing the private actions, and deceptive almost-sure winning strategy, i.e., the

strategy using which P1 can enforce satisfaction of its ω-regular reachability objective with

probability one and, possibly, an undetermined number of steps by strategically revealing the

26

private actions. Note that P1’s deceptive strategy cannot be stealthy in this case because P2’s

perception is allowed to evolve. We obtain two important results: (i) P1 gains no advantage by

using deception under deceptive sure winning condition. That is, no state which is losing for P1 in

the game with complete, symmetric information that becomes winning for P1 with the use of

deception under sure winning condition. (ii) On the contrary, we establish that deception could be

advantageous for P1 under the deceptive almost-sure condition. That is, there may exist a state

which is losing for P1 in the game with complete, symmetric information that becomes winning

for P1 with the use of deception under this almost-sure winning condition. We present an

algorithm to synthesize the deceptive almost-sure winning strategy for P1 in the interaction.

In Ch. 5, we investigate the class of games on graphs where P2 has incomplete information

about P1’s true objective. We study the problem in two settings. In Ch. 5.1, we consider the

problem of synthesizing stealthy deceptive strategies in deterministic two-player turn-based

games on graphs, when P1 leverages P2’s misinformation to its own advantage but does not

influence P2’s perception. We show a reduction from the problem of synthesizing stealthy

deceptive almost-sure winning strategies to that of computing almost-sure winning strategies in a

hypergame MDP representing the second-level hypergame modeling the interaction between P1

and P2. The reduction relies upon the characterization of the state-space of the hypergame MDP,

which we show to contain up to five regions.

Ch. 5.2 considers the problem of synthesizing (non-stealthy) deceptive strategies for P1 in a

stochastic two-player concurrent game on graph when P2 misperceives P1’s true objective and

P2’s perception may evolve during the interaction. In this setting, we model the interaction as a

dynamic hypergame on graph, where P2 is assumed to maintain a probability distribution over

P1’s possible objectives (i.e., a set of LTL objectives). Our solution consists of two key modules,

namely, opponent modeling and deceptive planning. Under the hypothesis that P2 uses a sub-goal

inference mechanism to update its probability distribution, the opponent modeling enables P1 to

track P2’s perception given the history of their interaction. Thus, P1 can predict how its strategy

will influence P2’s perception and strategy. Then, we integrate the opponent model into deceptive

27

planning to compute a strategy that maximizes the probability of satisfying P1’s true temporal

logic objective.

Finally, Ch. 6 investigates Research Question II by introducing a novel automata-theoretic

approach to qualitative planning in MDPs with incomplete preferences over temporal logic

objectives. Our approach consists of three steps. First, we express incomplete preferences over the

satisfaction of temporal goals specified using a fragment of LTL. Unlike propositional preferences

that are interpreted over states, preferences over temporal goals are interpreted over infinite

words. Second, we define an automata-theoretic model to capture the preferences over infinite

words induced by the given preference relation over temporal logic formulas. Thirdly, we present

an algorithm to solve preference-satisfying strategies in a stochastic system modeled as a labeled

MDP. We introduce two new concepts, namely, Safe and Positively Improving (SPI) and Safe and

Almost-surely Improving (SASI) strategies, that identify and exploit opportunities with positive

probability and probability one, respectively. To synthesize SPI and SASI strategies, we introduce

the idea of improvement MDP that distinguishes between opportunistic and non-opportunistic

states. We prove that synthesizing SPI and SASI in labeled MDP is equivalent to synthesizing

positive and almost-sure winning strategies in improvement MDP. Finally, we show that the

synthesized SPI, SASI strategies indeed yield the feasible, most-preferred outcomes.

28

CHAPTER 2
BACKGROUND ON GAME AND HYPERGAME THEORY

In this chapter, we discuss the basic definitions of various classes of games, hypergames,

objectives, strategies, and various solution concepts appearing in this thesis.

2.1 Games on Graphs

We start by defining the games on graphs and providing an overview of the established

results and algorithms in this domain. First, we outline some preliminary notation: Given a finite

set X , the powerset of X is denoted as ℘(X). The set of all finite (resp., infinite) ordered sequences

of elements from X is denoted by X∗ (resp., Xω). The set of all finite ordered sequences of length

greater than 0 is denoted by X+. We write D(X) to denote the set of probability distributions over

X . The support of a distribution D ∈ D(X) is denoted by Supp(D) = {x ∈ X | D(x)> 0}. The

indicator function is defined to be 1X(x) = 1 if x ∈ X and 0 otherwise.

We consider several classes of games on graphs, namely, MDP (one-player stochastic

games), deterministic two-player turn-based games on graphs, and stochastic two-player

concurrent games on graphs. All these classes can be represented in a unified manner as defined

below.

Definition 1 (Game on Graph). A game on graph is a transition system [78], represented by the

tuple,

G = ⟨S,Act,T,s0,AP,L⟩,

where S is the set of states; Act is the set of actions; T is a transition function; s0 ∈ S is an initial

state; AP is a set of atomic propositions; L : S→℘(AP) is a labeling function that maps every

state to the set of atomic propositions that hold in that state.

Hereafter, we refer to a game on graph as simply a game. The class of the game is

determined by the nature of its transition function and whether players select actions

simultaneously or in a turn-based fashion.

In any game, the transition function of a game may be either deterministic or probabilistic.

A deterministic transition function T : S×Act→ S maps a pair of a state and an action to a unique

29

next state. A probabilistic transition function T : S×Act→D(S) maps a pair of a state and an

action to a distribution over possible next states.

A two-player game is said to be concurrent if, at every state, both players simultaneously

decide their next action without the knowledge of the choice made by the other player. Let Act1

be the set of actions available to P1 and Act2 be the set of actions available to P2. Then, the set of

actions in a concurrent game can be represented as Act = Act1×Act2 and the transition function

may be represented as T : S×Act1×Act2→ S. On the other hand, a two-player game is said to be

turn-based if one player (P1 or P2) decides the next action at every state. In a turn-based game,

the set of states can be partitioned into two disjoint sets S1 and S2 such that S = S1∪S2, where S1

is the set of states where P1 chooses the next action and S2 is the set of states where P2 chooses

the next action. The transition function can be written as T : (S1×Act1)∪ (S2×Act2)→ S. In

turn-based games, each player observes the consequence of the action selected by its opponent in

the previous round. It is noted that MDPs are single-player games whose transition function is

probabilistic.

Plays. A play in a game G is an ordered sequence of state-action pairs τ = s0a0s1a1 . . . such

that, for every any integer i≥ 0, we have si+1 = T (si,ai). A path in a game G is the projection of

a trace τ onto the state space of the game: τ ⇂S= ρ = s0s1 The set of all paths in the game is

denoted by Paths(G) and the set of all finite prefixes of plays is denoted by

PrefPaths= {ρ[0 : n] | ρ ∈ Paths(G),n≥ 0}. Given any path ρ , the set of all states appearing in

ρ is denoted by Occ(ρ) := {s ∈ S | ∃i≥ 0 : ρ[i] = s}. Similarly, an action-history is the projection

of a trace τ onto the set of actions: τ ⇂Act= α = a0a1 Given the labeling function L, every run

ρ in G can be mapped to a word over an alphabet Σ =℘(AP) as w = L(ρ) = L(s0)L(s1)

Strategies. A strategy determines the next action to be chosen by a player given a history. In

concurrent games, a P1 strategy is a function π1 : S+→D(Act1) that maps every non-empty finite

sequence of states in PrefPaths to a probability distribution over the set of P1’s action set Act1.

Whereas, in turn-based games, a P1 strategy is defined only for non-empty finite sequence of

30

states ending in a P1 state. Thus, it is represented as a function π1 : S∗S1→D(Act1). A P2

strategy in concurrent and turn-based game is defined analogously.

Strategies can either be deterministic or randomized. A P1 or P2 strategy is said to be

deterministic if, for all non-empty finite sequence of states ρ ∈ PrefPaths such that πi(ρ), i = 1,2,

is defined, πi(ρ) is a Dirac delta distribution. Otherwise, it is said to be randomized. A strategy is

said to be memoryless if it only depends on the last state. Therefore, a memoryless P1 strategy in

a concurrent game is a function π1 : S→D(Act1). Whereas, a memoryless P1 strategy in a

turn-based game is a function π1 : S1→D(Act1). Deterministic, randomized, memory-based,

memoryless strategies of P2 are defined analogously.

Outcomes of strategies. Consider a starting state s0 ∈ S, a P1 strategy π1 and a P2 strategy π2.

Then, a path ρ = s0s1 . . . is said to be (π1,π2)-possible from state s0 if for every i≥ 0 the

following two conditions hold: if si ∈ S1 then there exists an action a ∈ Act1 such that

π1(s0 . . .si)(a)> 0 and T (si,a)(si+1)> 0; and if si ∈ S2 then there exists an action a ∈ Act2 such

that π2(s0 . . .si)(a)> 0 and T (si,a)(si+1)> 0. The set of all paths that are (π1,π2)-possible from

state s0 is denoted by Outcomes(s0,π1,π2).

Winning strategies. In several chapters, we consider P1’s objective to be a reachability

objective, and therefore, an adversarial P2 who wants to prevent P1 from satisfying her

reachability objective has a safety objective. In this case, we use a compact representation of the

game.

Definition 2 (Reachability Game). A game on graph in which P1 has a reachability objective is a

tuple,

G = ⟨S,Act,T,s0,F⟩,

where S,Act,T,s0 ∈ S have the same meanings as Def. 1; F ⊆ S is the set of states that P1 must

reach in order to satisfy its objective.

A reachability objective defines the winning set for P1 as

31

Reach(F) := {ρ ∈ Paths(G) | Occ(ρ)∩F ̸= /0}. Similarly, a safety objective of P2, which means

that P2 must prevent P1 from visiting a final state in F , defines the winning set for P2 as

Safe(F) := {ρ ∈ Paths(G) | Occ(ρ)∩F = /0}. Given P1’s strategy π1 and P2’s strategy π2, we

say P 1 wins the game if the outcome ρ ∈ Outcomes(s0,π1,π2) satisfies ρ ∈ Reach(F).

Otherwise, P2 wins the game.

Definition 3 (Sure Winning Strategy). A P1 strategy π1 is said to be sure winning at a state s ∈ S

in a game with the winning set Win⊆ Σω for P1 if, for every P2 strategy π2, we have

Outcomes(s0,π1,π2)⊆Win.

Definition 4 (Almost-sure Winning Strategy). A P1 strategy π1 is said to be almost-sure winning

at a state s ∈ S in a game with the winning set Win⊆ Σω for P1 if, for every P2 strategy π2, we

have Pr(Outcomes(s0,π1,π2)∩Win ̸= /0) = 1.

Definition 5 (Postive Winning Strategy). A P1 strategy π1 is said to be positive winning at a state

s ∈ S in a game with the winning set Win for P1 if, for every P2 strategy π2, we have

Pr(Outcomes(s0,π1,π2)∩Win ̸= /0)> 0.

The winning strategies for P2 under the three solution concepts are defined similarly.

The set of states in the game G from which P1 (resp. P2) has a sure winning strategy is

called the sure-winning region for P1 (resp. P2), denoted as SWin1(G,F) (resp. SWin2(G,F)).

Analogously, the set of states in the game G from which P1 (resp. P2) has an almost sure winning

strategy is called the almost sure winning region for P1 (resp. P2), denoted as ASWin1(G,F)

(resp. ASWin2(G,F)). Lastly, the set of states in the game G from which P1 (resp. P2) has a

positive winning strategy is called the positive winning region for P1 (resp. P2), denoted as

PWin1(G,F) (resp. PWin2(G,F)). The parameters (G,F) are dropped when they are clear from

context.

A P2 strategy π2 is said to be a permissive under sure winning condition if for any state

s ∈ SWin2 and any action a ∈ Act2 such that π2(s)(a)> 0, we have s′ ∈ SWin2 for any state s′ ∈ S

such that T (s,a)(s′)> 0. That is, by following a permissive strategy P2 is guaranteed to stay

32

within his sure winning region. The permissive strategies for P1 and P2 under sure winning,

almost-sure winning and positive winning conditions are defined analogously.

In the case of deterministic two-player turn-based games, the following results are known.

Proposition 1 (Determinacy). From every state s ∈ S in a deterministic two-player turn-based

game, either P1 or P2 has a memoryless sure winning strategy to satisfy their reachability or

safety objective, respectively. That is, for any deterministic two-player turn-based game, G, and a

subset of states F, SWin1(G,F)∪SWin2(G,F) = S and SWin1(G,F)∩SWin2(G,F) = /0.

Proposition 2 (Equivalence of Sure and Almost-sure Winning). In a deterministic two-player

turn-based game, P1’s sure and almost-sure winning regions coincide. That is, for any

deterministic two-player turn-based game, G, and a subset of states F, we have

SWin1(G,F) = ASWin1(G,F).

It follows from Proposition 1 and Proposition 2 that P2’s sure winning and almost sure

winning regions also coincide [17].

Synthesis algorithm for deterministic two-player turn-based game. The sure/almost-sure

winning region of P1 in a reachability G can be computed by using Alg. 2-1. The algorithm

constructs a sequence of sets, called level-sets, Z0,Z1, . . . ,ZK such that, from any state in

Zk \Zk−1, k > 0, P2 has a strategy to visit Z0 := F in no more than k steps. For any state s ∈ ZK ,

we define its rank to be the minimum number of steps in which P2 can ensure a visit to F

regardless of P1’s strategy, denoted by rankG(s). Thus, rankG(s) = 0 when s ∈ F ,

rankG(s) = min{k | s ∈ Zk} when s ∈ ZK \F , and rankG(s) = ∞ when s /∈ ZK . The following

properties of the level-sets constructed by Alg. 2-1 are known [9].

Proposition 3. The following statements are true about the level-sets Z0,Z1, . . . ,ZK constructed

by Alg. 2-1.

1. Z0 ⊆ Z1 ⊆ Z2 . . .⊆ ZK .

2. For any sets F1 ⊆ F2 ⊆ S, we have SWin1(G,F1)⊆ SWin1(G,F2).

33

3. For any sets F1,F2 ⊆ S, we have

SWin1(G,F1∪F2) = SWin1(G,SWin1(G,F1)∪SWin1(G,F2)).

Given the level-sets constructed by Alg. 2-1, a memoryless sure winning strategy of P2 can

be constructed as follows: Given a P2 state s ∈ ZK \F , let

Ds = {a ∈ A2 | s′ = T (s,a)∧ rankG(s′)< rankG(s)} be the set of actions a ∈ A2 for which the next

state s′ = T (s,a) has a strictly smaller rank than s. Then, any deterministic strategy π2 : S→ A

such that π2(s) ∈ Ds is a memoryless sure winning strategy for P2. Due to Proposition 1, the

winning region of P1 is S\ZK . A deterministic memoryless strategy π1 : S→ A1 is sure winning

for P1 at a P1 state s ∈ S1 if π1(s) ∈ {a ∈ A1 | s′ = T (s,a)∧ s′ ∈ S\ZK}.

Given the level-sets constructed by Alg. 2-1, a memoryless almost-sure winning strategy of

P2 can be constructed as follows [9]: Given a P2 state s ∈ ZK \F , let

Ds = {a ∈ A2 | s′ = T (s,a)∧ s′ ∈ ZK} be the set of actions a ∈ A2 for which the next state

s′ = T (s,a) is within the set ZK . Then, any strategy π2 ∈Π2 such that Supp(π2(s)) = Ds is a

memoryless almost-sure winning strategy for P2. Similarly, given any P1 state s ∈ S\ZK , any

strategy π1 ∈Π1 such that Supp(π1(s)) = {a ∈ A1 | s′ = T (s,a)∧ s′ ∈ S\ZK} is almost-sure

winning for P2.

Algorithm 2-1 Zielonka’s recursive algorithm to compute sure winning region in a reachability
game.

1: function SWin1(G,F)
2: Z0←F ,k← 0
3: repeat
4: Pre1(Zk)←{v ∈V1 | ∀a ∈ A1 : ∆(v,a) ∈ Zk}
5: Pre2(Zk)←{v ∈V2 | ∃a ∈ A2 : ∆(v,a) ∈ Zk}
6: Zk+1 = Zk∪Pre1(Zk)∪Pre2(Zk)
7: k← k+1
8: until Zk ̸= Zk−1
9: return Zk

10: end function

34

2.2 Temporal Logic and Automata

Linear Temporal Logic (LTL). Since we are interested in infinite-duration games, we focus on

ω-regular objectives. Specifically, in some chapters, we use LTL formulas [79] to define the

objectives of P1 and P2. Formally, an LTL formula is defined inductively as

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ⃝ϕ | ϕ Uϕ,

where p ∈ AP is an atomic proposition, ¬ (negation), ∧ (and), and ∨ (or) are Boolean operators,

and⃝ (next), U (strong until) and W (weak until) are temporal operators. A formula⃝ϕ means

that the formula ϕ will be true in the next state. A formula ϕ1Uϕ2 means that ϕ2 will be true in

some future time step, and before that ϕ1 holds true for every time step. We define two additional

temporal operators: ♢ (eventually) and □ (always) as follows: ♢ϕ =⊤Uϕ and □ϕ = ¬♢¬ϕ .

Syntactically co-safe LTL formulas. Sometimes, we restrict the specifications of the players to

the class of scLTL [10]. An scLTL formula contains only ♢ ,⃝ , and U temporal operators when

written in a positive normal form (i.e., the negation operator ¬ appears only in front of atomic

propositions). A unique property of scLTL formulas is that a word satisfying an scLTL formula ϕ

only needs to have a good prefix. That is, given a good prefix w ∈ Σ∗, the word ww′ |= ϕ satisfies

the scLTL formula ϕ for any w′ ∈ Σω . The set of good prefixes can be compactly represented as

the language accepted by a deterministic finite automaton (DFA) defined as follows.

Definition 6 (Deterministic Finite Automaton). A deterministic finite automaton (DFA) is a tuple,

A= ⟨Q,Σ,δ ,q0,F⟩,

where Q is the set of states; Σ :=℘(AP) is the alphabet; δ : Q×Σ→ Q is a deterministic

transition function; q0 ∈ Q is the initial state; and F ⊆ Q is the set of final states.

For a finite word w = σ0σ1 . . .σn ∈ Σ∗, the DFA generates a sequence of states q0q1 . . .qn+1

35

such that q0 = ι and qi+1 = δ (qi,σi) for any 0≤ i≤ n. The word w is accepted by the DFA if and

only if qn+1 ∈ F . The set of words accepted by the DFA A is called its language. Given P1’s

objective expressed as an scLTL formula ϕ , the set of good prefixes of words corresponding to ϕ

is accepted by a DFA, which has a special property that all final states are sink states. Thereby, if

a finite prefix of an infinite run reaches a final state, it is ensured that the “last” state will be a final

state and the word, corresponding to this run, is accepted. We assume that the DFA is

complete—that is, for every state-action pair (q,σ), δ (q,σ) is defined. An incomplete DFA can

be made complete by adding a sink state qsink such that ∀σ ∈ Σ,δ (qsink,σ) = qsink, and directing

all undefined transitions to the sink state qsink.

A path ρ in a game G is said to satisfy an LTL formula ϕ , if the labeling sequence L(ρ)

satisfies the formula ϕ , i.e., L(ρ) |= ϕ . Given this relation, a game in which P1 has an scLTL

objective can be equivalently represented by a reachability game constructed in the following way.

Definition 7 (Product Game). Given a game on graph G, let ϕ be an scLTL formula representing

P1’s objective, and A be the DFA representing the language of ϕ . Then, the product of the game

G with the DFA A, is the a reachability game,

Ĝ = ⟨Ŝ,Act, T̂ , ŝ0, F̂⟩,

where Ŝ = S×Q is the set of states; Act is the set of actions; ŝ0 = (s0,L(s0)) is the initial state;

and F̂ = S×F is the set of final states. The transition function is defined as follows: If the

transition function of G is deterministic, then T̂ ((s,q),a) = (s′,q′) if and only if T (s,a) = s′ and

δ (q,L(s′)) = q′. If the transition function of G is probabilistic, then

T̂ ((s,q),a)(s′,q′) = T (s,a)(s′) if δ (q,L(s′)) = q′, and T̂ ((s,q),a)(s′,q′) = 0, otherwise.

2.3 Hypergame Theory

A hypergame [27] is a model used to capture strategic interactions when players have

incomplete information. Intuitively, a hypergame is a game of games, and each game is associated

with a player’s subjective view of its interaction with other players based on its own information

36

and information about others’ subjective views. Hypergames are defined inductively based on the

level of perception of individual players. A level-0 (L0) hypergame is a game with complete,

symmetric information, where the perceptual games of both players are identical to the true game.

In a level-1 (L1) hypergame, at least one of the players, say P2, misperceives the true game, but

neither is aware of it. In this case, both players believe their perceptual game to be the true game

and play according to their perceptual games, which are level-0 hypergames. In a level-2 (L2)

hypergame, one of the players becomes aware of the misperception and is able to reason about its

opponent’s perceptual game.

Definition 8 (Level-1 and Level-2 Hypergame). Given the true game known to P1 G1 and P2’s

perceptual game G2, the level-1 (L1) hypergame is defined as a tuple H1 := ⟨G1,G2⟩. The level-2

(L2) hypergame between P1 and P2 is the tuple,

H2 = ⟨H1,G2⟩.

In L2-hypergame, P1 is aware of P2’s misperception, but P2 remains unaware that it lacks

information. Consequently, P2 computes its strategy by solving its perceptual game G2. P1

decides its strategy by solving the L1-hypergame H1, which allows P1 to incorporate P2’s

strategy as computed in G2 into its decision-making.

We now discuss the solution concepts of hypergames. Given that different players may have

different perceptions (i.e., subjective views) of the utility functions in a hypergame, let u j
i denote

the utility function of player i perceived by player j.

Definition 9 (Subjective Rationalizability [43]). Given a L2 hypergame H2 = ⟨H1,G2⟩, strategy

π
∗,2
i is subjective rationalizable for P2 if and only if it satisfies, for all πi ∈Πi,

u2
i (h,π

∗,2
i ,π∗,2j)≥ u2

i (h,πi,π
∗,2
j),

where (i, j) ∈ {(1,2),(2,1)}. The strategy π
∗,1
1 is subjective rationalizable for P1 if and only if it

37

satisfies, for all π1 ∈Π1,

u1
1(h,π

∗,1
1 ,π∗,22)≥ u1

1(h,π1,π
∗,2
2),

where π
∗,2
2 is subjective rationalizable for P2.

In words, a strategy π
∗,i
i is called subjective rationalizable for player i if in player i’s

subjective view, it is the best response to player j’s best response π
∗,i
j , which is computed from

player i’s perceptual game. A pair of subjective rationalizability (SR) strategies ⟨π∗,11 ,π∗,22 ⟩ is

called the best-response equilibrium of the hypergame H2. In L2 hypergame, P2’s strategy is

subjective rationalizable if it is rationalizable in P2’s perceptual game G2. P1’s strategy is

subjective rationalizable if it is the best response to P2’s subjective rationalizable strategy.

38

CHAPTER 3
SYNTHESIS WITH MISPERCEPTION OF LABELING FUNCTION

This chapter investigates the synthesis of deceptive winning strategies for the sub-class of

games with incomplete information where P2 misperceives P1’s labeling function. The labeling

function enables a player to interpret an outcome, i.e., an infinite sequence of game states, to

evaluate whether it satisfies its ω-regular objective. Therefore, when P2 misperceives P1’s

labeling function, P2 may not correctly distinguish between a winning and a losing outcome. For

instance, imagine the case where P2 mislabels an unsafe state as a target state. This provides P1

an opportunity to leverage P2’s misperception and enforce a winning outcome from an otherwise

P1’s losing state, i.e., a state from which P2 has a winning strategy if it had complete information.

The chapter contains two sections. The first section develops the theoretical foundations of

analyzing the aforementioned class of games. It introduces a static hypergame on graph model

and the solution concepts of stealthy deceptive sure winning and stealthy deceptive almost-sure

winning to analyze the rational behavior of players in the hypergame. The second section applies

the developed theory to solve the decoy placement problem (also known as the honeypot

allocation problem [80, 81]) in cybersecurity, which asks to place deception resources in a

network to disinform P2 about P1’s labeling function and leverage it to synthesize a deceptive

strategy for P1 to maximize its winning region.

3.1 Effect of Labeling Misperception

Consider an interaction between P1 and P2 characterized by a deterministic two-player

turn-based zero-sum game, G = ⟨S,Act,T,s0,AP,L⟩, as defined in Def. 1. In this interaction, P1’s

objective is to satisfy an scLTL formula ϕ while P2’s objective is to prevent P1 from satisfying

her objective. However, we assume that P1 and P2 play with different labeling functions.

Specifically, the information structure is as follows:

Assumption 1 (Information Structure). The components S, Act, T and AP of the game G, and

P1’s objective ϕ are known to both players P1 and P2. P1 has complete information about the

labeling function, that is, she knows the true label L(s) of every state s ∈ S. P2 has incomplete

39

information about P1’s labeling function: There exists at least one state s ∈ S such that

L2(s)⊆ L(s). P1 knows P2’s perceived labeling function L2.

Perceptual games. As a result of Assumption 1, P1 and P2 have different perceptions of the

game arena. P1 knows the true game arena G whereas P2 knows the arena with a different

labeling function, say G2 = ⟨S,Act,T,AP,L2⟩. Hence, P1 and P2 play different games in their

minds. Since P1 knows her labeling function, she constructs a perceptual game as the product

G⊗A, where A is the DFA representing the language of scLTL formula ϕ . On the other hand, P2

constructs his perceptual game as the product G2⊗A.

Notation 1. Given a labeling function L, let G(L) denote the deterministic two-player turn-based

game on a graph in which the labeling function is L.

Abusing the notation, we will write P1’s perceptual game G(L) to represent the product

game G⊗A. Similarly, P2’s perceptual game is denoted by G(L2), which represents the product

game G2⊗A.

As a consequence of misperception, there exist paths ρ = s0s1 . . . in the game arena that are

interpreted differently by P1 and P2. Specifically, P1’s interpretation is L(ρ) = L(s0)L(s1) . . .

whereas that of P2 is L2(ρ) = L2(s0)L2(s1) Because of this the paths induced by ρ in the DFA

representing the language of scLTL formula ϕ are different. Thus, P1 may mislead or deceive P2

on how much progress has been made towards satisfying ϕ by strategically visiting those states

s ∈ S where L(s) ̸= L2(s).

A necessary condition for P1 to succeed at deception is to ensure that P2 does not learn

about his misperception. Assuming that both players expect their opponent to be rational, P2

would learn about his misperception if P1 acts in a way that P2 considers irrational. A P1’s

deceptive strategy that prevents P2 from beecoming aware of his misperception is called a

stealthy deceptive strategy (formalized in Def. 11). We now state our problem statement.

Problem 1. Consider an interaction between P1 and P2 under Assumption 1 where the true game

arena is G, P2’s perceived game arena is G2, and P1’s objective is to satisfy ϕ . Then, determine

40

the stealthy deceptive strategy using which P1 can satisfy ϕ under the qualitative solution

concepts of sure and almost-sure winning.

3.2 Static Hypergame on Graph

Given that P1 and P2 play different perceptual games, their interaction can be modeled as a

hypergame. Following the discussion in Sec. 2.3, the first-level hypergame representing the

interaction between P1 and P2 is given by H1 = ⟨G(L),G(L2)⟩. Since P1 is aware that ϕ2 is her

private information, she is also aware that P2 misperceives her true objective. Therefore, their

interaction is, in fact, a second-level hypergame.

H2 = ⟨H1,G(L2)⟩. (3-1)

We now define a graphical model of the hypergame H2 that incorporates the superior

knowledge of P1. Using this model, we can compute P2’s subjectively rationalizable strategy and

use it to synthesize a stealthy deceptive strategy for P1.

Definition 10. Given the perceptual games G(L) and G(L2), a hypergame on a graph is a

deterministic two-player turn-based game on a graph,

H= ⟨V,Act,∆,v0,F⟩,

where

• V := S×Q×Q is the set of states;

• ∆ : V ×Act→V is a deterministic transition function such that given two states

(s,q, p),(s′,q′, p′) ∈V and an action a ∈ Act, we have (s′,q′, p′) = ∆((s,q, p),a) if and only

if s′ = T (s,a) and q′ = δ (q,L(s′)) and p′ = δ (p,L2(s′));

• v0 ∈V is an initial state.

• F = ASWin(G(L),S×F)×Q is the set of final states.

41

In a hypergame on a graph, a state v = (s,q, p) ∈V allows P1 to track the progress q that is

truly made towards satisfying the objective as well as the progress p that P2 thinks has been made

towards satisfying the objective. This is because the component q evolves according to P1’s

perceptual game G(L) whereas the component p evolves according to P2’s perceptual game

G(L2). The set of final states is defined, intuitively, to signify that P1’s objective inH is to visit a

winning state in her perceptual game regardless of what P2’s perception is.

We now formalize the notion of stealthy deceptive strategy that leverages P2’s

misperception but ensures that P2 remains unaware of her misperception.

Definition 11 (Stealthy Deceptive Winning Strategy). A memoryless, randomized strategy

π : V →D(Act1) is said to be stealthy deceptive sure (resp., almost-sure) winning in the

hypergameH if the following two conditions hold: (a) Stealthy: For any

v ∈V \ASWin1(G(L),F)×Q, π(v,a)> 0 only if action a is subjectively rationalizable for P1 in

G(L2); (b) Winning: Given any state v ∈V and any subjectively rationalizable strategy µ of P2,

for every run ρ ∈ Outcomes(v,π,µ) we have Occ(ρ)∩F ≠ /0 (resp., Pr(Occ(ρ)∩F ≠ /0) = 1).

A state v ∈H is said to be stealthy deceptive sure (resp., almost-sure) winning if P1 has a

stealthy deceptive sure (resp., almost-sure) winning strategy from that state. The set of all stealthy

deceptive sure (resp., almost-sure) states is called the stealthy deceptive sure (resp., almost-sure)

winning region.

3.2.1 Stealthy Deceptive Sure Winning Strategy

In this section, we reduce the problem of synthesizing a stealthy deceptive sure winning

strategy to that of synthesizing a sure winning strategy in a deterministic two-player turn-based

game on a graph. Our idea is to construct a game on a graph that includes only those actions that

are subjectively rationalizable from P2’s perspective. The following result provides a way to

characterize the subjectively rationalizable actions.

Lemma 3-1. Given a state v = (s,q, p) ∈V and an action a ∈ Act, let v′ = (s′,q′, p′) = ∆(v,a).

Then, the action a is subjectively rationalizable at the state v if one of the following conditions

hold:

42

(a) The states (s, p) and (s′, p′) are both P1’s sure winning states in P2’s perceptual game G(L2).

(b) The states (s, p) and (s′, p′) are both P2’s sure winning states in P2’s perceptual game G(L2).

(c) If neither (a) nor (b) holds, then the action a is subjectively rationalizable at the state v.

Intuitively, the conditions (a) and (b) assert that P2 thinks that a rational player, from a

winning state, will select a winning action which allows the player to stay within their winning

region. From a losing state, any action is considered subjectively rationalizable because the player

knows that they have lost the game.

Notation. We denote P1 and P2’s subjectively rationalizable strategies in P2’s game by

π2
i : V → 2Act , for i = 1,2. For a P1 state v = (s,q, p),

π
2
1 (v) = {a ∈ Act1 | ∆2((s, p),a) ∈ SWin1(G(L2),F)}, (3-2)

where T2 is the transition function of P2’s perceptual game G(L2) and SWin1(G(L2),F) is P1’s

sure winning region in G(L2). P2’s subjectively rationalizable strategy π2
2 is defined analogously.

Next, we define the game on a graph that excludes non-subjectively rationalizable P1

actions.

Definition 12. Given the hypergame on a graphH and the subjectively rationalizable strategies

π2
1 ,π

2
2 of P1 and P2 in P2’s perceptual game G(L2), the game on a graph excluding

non-subjectively rationalizable P1 actions is the tuple,

Ĥ= (V,Act, ∆̂,v0,F)

where the transition function ∆̂ is obtained from ∆ by restricting both players’ actions as follows:

For any state v = (s,q, p) ∈V and any action a ∈ Act,

• If (s,q) ∈ SWin1(G(L),F), then ∆̂(v,a) = ∆(v,a).

43

• If (s,q) /∈ SWin1(G(L),F) and (s, p) ∈ SWin2(G(L2),F), then ∆̂(v,a) =↑ if s ∈ S2 and

π2
2 (v)(a) = 0. Otherwise, ∆̂(v,a) = ∆(v,a).

• If (s,q) /∈ SWin1(G(L),F) and (s, p) ∈ SWin1(G(L2),F), then ∆̂(v,a) =↑ if s ∈ S1 and

π2
1 (v)(a) = 0. Otherwise, ∆̂(v,a) = ∆(v,a).

The set of final states F = {(s,q, p) ∈V | (s,q) ∈ SWin1(G(L),F) and p ∈ Q}–that is, P1

satisfied her objective in G(L) by visiting any state in F .

Theorem 3-1. Given a state v ∈V , P1 has a stealthy deceptive sure winning strategy at the state

v in hypergameH if and only if she has a sure winning strategy at the state v in the game Ĥ.

Proof. Before reaching the set SWin1(G(L),F)×Q, at any state (s,q, p) where s ∈ S2, if (s, p) is

perceived winning by P2 (i.e., (s, p) ∈ SWin2(G(L2),F)), then P2 will select a subjectively

rationalizable action a ∈ π2
2 (s, p). If (s, p) is not in SWin2(G(L2),F), then any action from P2 is

subjective rationzalizable. At a state (s,q, p) where s ∈ S1, if (s, p) ∈ SWin1(G(L2),F) but

(s,q) /∈ SWin1(G(L),F), then P1 will select a subjectively rationalizable action a ∈ π2
1 (s, p) so as

not to contradict P2’s perception. If (s, p) /∈ SWin1(G(L2),F) and (s,q) /∈ SWin1(G(L),F), then

any action of P1 is deemed subjectively rationalizable by P2. The solution of reachability game H̃,

is a policy π∗1 : S×Q×Q→ A1 that ensures starting from a state where π∗1 is defined, no matter

which action P2 selects in H̃, P1 can ensure to reach a state (s,q, p) with (s,q) ∈ SWin1(G(L),F)

by following π∗1 , in finitely many steps. By construction, P2 will not know that a misperception

exists as P1 takes only subjective rationalizable actions, until P1 reaches SWin1(G(L),F). After

reaching the set, P1 can follow the true winning strategy defined for SWin1(G(L),F).

3.2.2 Stealthy Deceptive Almost-Sure Winning Strategy

P1’s stealthy deceptive sure winning strategy is robust against any deterministic subjectively

rationalizable strategy of P2. When synthesizing stealthy deceptive almost-sure winning strategy,

we assume that the players use randomized strategy. In this case, we are interested to know

whether the use of randomized strategy is more advantageous than using a deterministic strategy.

We start by making a reasonable assumption on P2’s strategy.

44

Assumption 2. For a P2 state v ∈V in theH, any subjectively rationalizable action at (s, p) in

P2’s perceptual game G(L2) is selected by P2 with a non-zero probability.

Because of Assumption 2, P2 can be treated as a random player who chooses an subjectively

rationalizable action during every turn. This reduces the hypergameH to a MDP defined below.

Definition 13. Given the hypergame on a graphH and the randomized subjectively rationalizable

strategies π2
1 ,π

2
2 of P1 and P2 in P2’s perceptual game G(L2), the MDP is a tuple,

H̃= (V1,Act1, ∆̃,v0,F),

where

• V1 = S1×Q×Q is the subset of hypergame states at which P1 chooses an action.

• Act1 is the set of P1’s actions.

• v0 ∈V1 is an initial state.

• ∆̃ : V1×Act1→D(V1) is defined as follows: For any state v = (s,q, p) ∈V1 and an action

a ∈ Act1, let v′ = (s′,q′, p′) = ∆(v,a),

– If v ∈ ASWin2
2 then Pr(v′′ | v,a)> 0 for every state v′′ = (s′′,q′′, p′′) ∈V1 if there exists

a P2’s subjectively rationalizable action b ∈ Act2 such that π2
2 ((s

′, p′))(b)> 0 and

v′′ = ∆(v′,b).

– If v ∈ ASWin2
1 then Pr(v′′ | v,a)> 0 for every state v′′ = (s′′,q′′, p′′) ∈ hgameState1 if

action a is subjectively rationalizable at the state (s, p) in P2’s perceptual game G(L2),

i.e., π2
1 ((s, p))(a)> 0, and there exists a P2’s subjectively rationalizable action

b ∈ Act2 such that π2
2 ((s

′, p′))(b)> 0 and v′′ = ∆(v′,b).

The set of final states F = {(s,q, p) ∈V | (s,q) ∈ ASWin1
1 and p ∈ Q}–that is, P1 satisfied her

objective in G(L) by visiting any state in F .

45

Theorem 3-2. Given a state v ∈V1, P1 has a stealthy deceptive almost-sure winning strategy at

the state v in hypergameH if and only if she has a almost-sure winning strategy at the state v in

the game H̃.

The proof is similar to that of Thm. 3-2.

3.3 Decoy Allocation Problem

In this section, we consider a joint deception resource allocation and deceptive strategy

synthesis problem for a class of games on graphs with incomplete information. We consider a

subclass of games on graphs called reachability games that represent a sequential interaction

between two players, namely, a defender (P1) and an attacker (P2). The attacker’s objective is to

reach a set of target states, while that of the defender is to prevent the attacker from reaching a

target state. Employing the solutions of zero-sum reachability games [9], we can identify a set of

states from which P1 has no strategy to prevent P2 from visiting a true target. To protect targets

when the game starts from a P1’s losing position, P1 can allocate deception resources to

disinform the attacker and further synthesize a deceptive strategy that exploits the attacker’s

misinformation to prevent it from reaching the target states. We consider two classes of deception

resources that serve the functions of hiding the real and reveal the fiction [82]. Hiding the real

refers to the defender simulating a trap to function like a real state while revealing the fiction

corresponds to camouflaging a state to look like a target state for the attacker. Given this setup,

we are interested in the following problem: How to optimally allocate the decoys so that the

defender can influence the attacker into taking (or not taking) certain actions that maximize the

defender’s deceptive winning region?

3.3.1 Modeling and Problem Formulation

We consider the class of interactions between P1 and P2 characterized by the following

information structure.

Assumption 3 (Information Structure). P1 knows the true game, i.e., the locations and types of

all decoys. P2 is unaware of the presence of decoys. P1 knows about P2’s unawareness.

46

In a game with incomplete information satisfying Assumption 3, the players perceive their

interaction differently. P1 has complete information about the location and type of the decoys

and, therefore, knows the true game.

Definition 14 (True Game). Given a base game G = ⟨S,A,T,s0,F⟩, let X and Y be two subsets of

S\F such that X ∩Y = /0. The deterministic two-player turn-based game representing the true

interaction between P1 and P2 when the states in X are allocated as traps and those in Y are

allocated as fake targets is the tuple,

G1
X ,Y = ⟨S,A,TX ,Y ,s0,F⟩,

where

• S, A, s0 and F are defined as in Def. 2;

• TX ,Y is a deterministic transition function. Given any state s ∈ S and any action a ∈ A,

TX ,Y (s,a) =


T (s,a) if s /∈ X ∪Y

s otherwise

Note that the states in G which are allocated as decoys are ‘sink’ states in G1
X ,Y . Hereafter,

we reserve the symbols X ,Y to represent traps and fake targets.

On the other hand, P2 is unaware of the presence of decoys. Therefore, in its subjective

view of the game, P2 does not mark the states in X ∪Y as sink states; instead, it considers the

states in Y to be goal states.

Definition 15 (P2’s Perceptual Game). Given a base game G = ⟨S,A,T,s0,F⟩, a set X of traps

and a set Y of fake targets, P2’s perceptual game is the tuple

G2
X ,Y = ⟨S,A,T,s0,F ∪Y ⟩,

47

where

• S, A, T , s0 have the same meanings as Def. 2;

• F ∪Y is a set of goal states as perceived by P2.

Remark 1. When P1 places no fake targets, i.e., Y = /0, we have G2
X ,Y = G.

Given the information structure in Assumption 3, we consider the following problem:

Problem 2. Let G = ⟨S,A,T,s0,F⟩ be a reachability game. Determine the subsets X ,Y ⊆ S\F of

traps and fake targets that maximize the number of states from which P1 has (i) a sure winning

strategy, (ii) an almost-sure winning strategy, to prevent P2 from reaching F , taking into account

P2’s incomplete information and subject to the constraints that |X | ≤M, |Y | ≤ N and X ∩Y = /0.

We introduce a running example to illustrate the key insights derived in this paper.

Example 1 (Running Example). Consider the game depicted in Fig. (3-1). The game consists of

12 states, where circular states represent P1 states and square states represent P2 states. The final

states s0 and s1 are indicated by a double boundary. In this game, P2 aims to reach either state s0

or s1.

To determine the winning regions of the players, Alg. 2-1 is applied to G with the set of

final states F = {s0,s1}. The colors assigned to the states in the figure correspond to the result of

this algorithm. Blue-colored states represent the sure/almost-sure winning region of P1, while

red-colored states represent the corresponding region of P2. Additionally, the rank of each state is

indicated by its column placement. A state belonging to a column with rank k = n possesses a

rank equal to n. For instance, the states s5,s6 have a rank of 2, while the state s9 has a rank of 5.

The states s10,s11 that constitute P1’s sure winning region have rank +∞.

3.3.2 P2’s Subjectively Rationalizable Strategy

In this subsection, we discuss the effect of decoys on P2’s winning region and the

subjectively rationalizable strategies in its perceptual game.

48

s0

s1

s2

s3

s4

s5

s6

s7s8s9

s10

s11

k = 0k = 1k = 2k = 3k = 4k = 5k =+∞

⊤

⊤

b2b1

a1

a2

a2

b2b1

b1

b2

a1

a2b1

b2

a2

a1

a1

a2

b2

Figure 3-1. Base game considered in the running example.

As discussed in Rmk. 1, traps do not impact P2’s perception. Consequently, traps do not

influence the winning regions of the players in P2’s perceptual game, nor do they affect P2’s

subjectively rationalizable strategy. Therefore, in this subsection, we focus on the case when Y is

a non-empty subset of S\F and P2’s objective in G2
X ,Y is to reach F ∪Y .

We first introduce a lemma that captures the effect of making a subset of states in

SWin2(G,F)\F to be P2’s goal states. The lemma will aid us in proving Proposition 4, which

summarizes the effect of decoys on the size of winning regions of P1 and P2 as perceived by P2.

The lemma is general and holds for any reachability game.

Lemma 3-2. Let G = ⟨S,A,T,s0,F⟩ be a game as per Def. 2. Given any Y ⊆ SWin2(G,F)\F, let

G2
/0,Y = ⟨S,A,T/0,Y ,s0,F ∪Y ⟩ be a game in which a subset of P2’s winning region is marked as final

states in addition to F. Then, the rank of any state s ∈ SWin2(G,F) in G2
/0,Y is less than or equal

to its rank in G.

Proof. Recall that the rank rankG(s) of a state s ∈ SWin2(G,F) in game G is the smallest number

of steps in which P2 can ensure a visit to F , regardless of the deterministic strategy followed by

P1. By definition, in game G, every path in OutcomesG(s,π1,π2) from any state s ∈ SWin2(G,F)

is ensured to visit F for any valid P1 strategy π1 and any sure winning strategy π2 of P2. Since, in

game G2
/0,Y , the presence of fake targets does not affect the transitions from any state except those

in Y and all states in F ∪Y are sink states, two possibilities arise for any path

ρ ∈ OutcomesG2
/0,Y
(s,π1,π2): either ρ visits Y before visiting F , or ρ visits F without visiting Y .

49

In both cases, the number of steps required to visit F ∪Y is at most rankG(s). The rank of s in

G2
/0,Y is strictly smaller than rankG(s) when P2 has a sure winning strategy from s to visit Y .

Since the presence of traps does not affect P2’s perception, it does not affect the ranks of the

states. Hence, Lma. 3-2 extends naturally to games containing both types of decoys.

Corollary 1. For any state s ∈ SWin2(G,F), its rank in G2
X ,Y is less than or equal to its rank in G.

We now introduce a proposition to summarize the effect of decoys on the size of winning

regions of P1 and P2 as perceived by P2.

Proposition 4. The following statements about G2
X ,Y are true.

(a) If Y ⊆ SWin1(G,F), then SWin1(G2
X ,Y ,F ∪Y)⊆ SWin1(G,F) and

SWin2(G2
X ,Y ,F ∪Y)⊇ SWin2(G,F).

(b) If Y ⊆ SWin2(G,F)\F, then SWin1(G2
X ,Y ,F ∪Y) = SWin1(G,F) and

SWin2(G2
X ,Y ,F ∪Y) = SWin2(G,F).

Proof. (a). Consider the statement SWin2(G2
X ,Y ,F ∪Y)⊇ SWin2(G,F). Let s ∈ SWin2(G,F). By

Corollary 1, the rank of s in G2
X ,Y is smaller than its rank in G. Since any state with a finite rank in

G2
X ,Y is a winning state for P2, s ∈ SWin2(G2

X ,Y ,F ∪Y). The statement

SWin1(G2
X ,Y ,F ∪Y)⊆ SWin1(G,F) follows from SWin2(G2

X ,Y ,F ∪Y)⊇ SWin2(G,F) using

Proposition 1.

(b) Consider the statement SWin2(G2
X ,Y ,F ∪Y) = SWin2(G,F).

(⊇). Given any state s ∈ SWin2(G,F), by Corollary 1, its rank in G2
X ,Y is finite. Thus, we

have SWin2(G2
X ,Y ,F ∪Y)⊇ SWin2(G,F).

(⊆). By way of contradiction, suppose there exists a state s ∈ SWin2(G2
X ,Y ,F ∪Y) such that

s /∈ SWin2(G,F). This means that P2 has a greedy deterministic strategy, say π2, to enforce a visit

to F ∪Y in G2
X ,Y . But following π2 in G does not induce a visit to F . Now, if π2 induces a visit to

F in G2
X ,Y , then it must also be a sure winning strategy for P2 in G, as the presence of fake targets

only affects the outgoing transitions from Y . Therefore, it must be the case that the following π2

50

induces a visit to Y in G2
X ,Y . Since Y ⊆ SWin2(G,F), in game G, P2 has a greedy deterministic

strategy to enforce a visit to F from any state in Y . Thus, by following π2 until visiting Y and then

following any greedy sure winning strategy in game G to visit F from Y , P2 can enforce a visit to

F from state s—a contradiction.

The statement SWin1(G2
X ,Y ,F ∪Y) = SWin1(G,F) follows from

SWin2(G2
X ,Y ,F ∪Y) = SWin2(G,F) using Proposition 1.

Intuitively, Proposition 4(a) states that when fake targets are placed within P1’s sure

winning region in G, P2 misperceives some states that are truly winning for P1 to be winning for

itself. This is because P2 misperceives fake targets Y as goal states.

Proposition 4(b) is particularly noteworthy, as it reveals that placing fake targets within P2’s

sure/almost-sure winning region in game G has no impact on the sure/almost-sure winning

regions of the players in P2’s perceptual game. This observation is intuitively supported by

Corollary 1, which states that the rank of a state in SWin2(G,F)\F cannot increase when a

subset of states from this set are assigned as fake targets. Additionally, there cannot exist a state

outside SWin2(G,F) from which P2 can enforce a visit to F ∪Y in G2
X ,Y . Because, if such a state

existed, then it should have been included in SWin2(G,F) since from all states in Y in game G, P2

has a strategy to enforce a visit to F .

However, the inclusion of fake targets in SWin2(G,F) results in modifying the set of

strategies that are subjectively rationalizable for P2 when players use greedy sure winning

strategies. This is due to the alteration of state ranks, which influence the set of subjectively

rationalizable actions under the sure winning condition available at each state. The following

example illustrates this phenomenon.

Example 2. Fig. (3-2) shows the perceptual games of P1 and P2 when a fake target is placed at

the state s7. Fig. (3-2)(a) shows P1’s perceptual game, in which s7 is marked as a sink state (see

honeypot symbol). The sure winning region of P1 in this game contains the states

{s7,s8,s9,s10,s11} (shown in blue), and that of P2 contains {s0,s1,s2,s3,s4,s5,s6} (shown in red).

Fig. (3-2)(b) shows P2’s perceptual game, where P2 misperceives s7 as a target. Consequently, the

51

sure winning region of P1 is {s10,s11} (shown in blue) and that of P2 contains the states

{s0, . . . ,s9} (shown in red).

Observe how the fake target s7 affects the ranks of the states s0, . . . ,s9. When players use

greedy sure winning strategies, s7’s rank changes from 3 in the base game (see Fig. (3-1)) to 0 in

P2’s perceptual game. Similarly, the states s5 and s8, from which P2 has a strategy to visit s7 in

one step, attain rank 1 in P2’s perceptual game.

The changes to the ranks of the states affect P2’s subjectively rationalizable strategy in its

perceptual game. For instance, consider the action b2 at state s5. In the base game, b2 is

subjectively rationalizable for P2 because it is rank-reducing. However, in P2’s perceptual game,

the action b2 is not rank-reducing. Therefore, it is not subjectively rationalizable. In fact, the

action b1, which was not rationalizable in the base game, becomes subjectively rationalizable for

P2 in its perceptual game.

3.3.3 Stealthy Deceptive Sure Winning Strategy

In this subsection, we introduce a new hypergame on graph model to synthesize a stealthy

deceptive sure winning strategy for P1. Two key observations facilitate our definition of the

hypergame on graph:

(i) When the game starts at a P1’s sure/almost-sure winning state in G1
X ,Y , P1 can prevent the

game from reaching F without the use of decoys.

(ii) When the game starts from a P2’s sure/almost-sure winning state in G1
X ,Y , the only way for

P1 to prevent the game from visiting F is by forcing a visit to a decoy state.

As a result, P1’s safety objective to prevent a visit to F reduces to a reachability objective to visit

X ∪Y .

Lemma 3-3. Any P1 strategy π1 at a state s ∈ SWin2(G,F) that prevents a visit to F in the true

game G1
X ,Y must ensure a visit to a state in X ∪Y .

Proof. We will focus on the case where players utilize randomized strategies, given that

deterministic strategies are a special case of randomized strategies.

52

s0 s1

s2 s3 s4

s5 s6

s7

s8

s9

s10 s11

⊤ ⊤
b2

b1

a1 a2 a2

b2

b1

b1 b2

a1

a2

b1

b2 a2

a1

a1

a2 b2

(a) P1’s perceptual game.

s7

s0

s1

s8

s2

s5

s3

s4

s9 s6

s10

s11

k = 0k = 1k = 2k = 3k =+∞

⊤

⊤

b2

b1

a1

a2

a2

b2

b1
b1

b2

⊤
b1

b2

a2

a1

a1a2

b2

(b) P2’s perceptual game.

Figure 3-2. Perceptual games when the state s7 is a fake target. In both sub-figures, the
blue-colored states are winning for P1, and the red-colored states are winning for P2.
Dotted transitions depict actions that are not subjectively rationalizable for P2 when
players use greedy deterministic strategies.

By way of contradiction, suppose that there exists a strategy π1 for P1 to prevent the game

G1
X ,Y from reaching F starting from state s while ensuring that no state in X ∪Y is visited. In other

words, the game remains indefinitely within the set SWin2(G,F)\ (F ∪X ∪Y). However, by

definition, for every state s ∈ SWin2(G,F), P2 possesses a strategy π2 that guarantees a visit to F

from s in the original game G, regardless of P1’s strategy. Therefore, if P1 follows π1 and P2

follows π2 in the game G1
X ,Y , the resulting path must indefinitely remain within the set

SWin2(G,F)\ (F ∪X ∪Y) while also visiting F—a contradiction. Consequently, the only way for

P1 to prevent the game from reaching F is by visiting the set X ∪Y , which contains sink

states.

Following Observation (i) and Lma. 3-3, we define our hypergame on graph model as a

reachability game, in which the players only follow strategies that are subjectively rationalizable

for P2 and P1’s objective is to reach a decoy state. When players use greedy sure winning

53

strategies, the set of subjectively rationalizable actions at a P2 state in SWin2(G,F)\F is given by

SRAct(s) = {a ∈ A2 | s′ = T (s,a)∧ rankG2
X ,Y

(s′)< rankG2
X ,Y

(s)}. (3-3)

Definition 16 (Hypergame on Graph). Given the game G, the sets of decoys X ,Y ⊆ SWin2(G,F),

and a function SRAct that maps every state in G to a set of subjectively rationalizable actions for

P2, the hypergame on graph representing the L1-hypergame H1 is the tuple,

Ĥ1(X ,Y) = ⟨SWin2(G,F),A, T̂X ,Y ,X ∪Y ⟩,

where

• SWin2(G,F) is set of states.

• T̂X ,Y : S×A→ S is a deterministic transition function such that, for any state

s ∈ SWin2(G,F), T̂X ,Y (s,a) = T (s,a) if and only if a ∈ SRAct(s). Otherwise, T̂X(s,a) is

undefined.

• X ∪Y ⊆ SWin2(G,F)\F is the set of states representing P1’s reachability objective.

It is noted that the set X ∪Y in Ĥ1(X ,Y) defines P1’s reachability objective, not P2’s

objective.

Theorem 3-3. Every sure winning strategy of P1 in Ĥ(X ,Y) is a stealthy deceptive sure winning

strategy for P1 in the L2-hypergame, H2(X ,Y).

Proof. Every action available to P1 and P2 in Ĥ(X ,Y) is greedy and subjectively rationalizable

for P2 by construction. Therefore, every sure winning strategy of P1 in Ĥ(X ,Y) is greedy and

subjectively rationalizable for P2. By Lma. 3-3, the strategy is stealthy deceptive sure winning for

P1 in H2(X ,Y).

Example 3. In Fig. (3-3), we present the hypergame on a graph that captures the interaction

between P1 and P2 as described in Example (1). The hypergame includes states s0 . . .s9,

54

representing P2’s sure winning region in the base game. Dotted transitions represent P2’s actions

that are not subjectively rationalizable for P2 in its perceptual game and are excluded from the

hypergame on graph. The result of applying Alg. 2-1 to the hypergame on graph is shown by

coloring the states of the hypergame on graph. Cyan-colored states indicate that P1 has a sure

winning strategy to reach s7 from those states, representing P1’s stealthy deceptive sure winning

region. Red-colored states indicate P2’s sure winning region, from which P1 has no deceptive

strategy to prevent a visit to s0 or s1.

For example, P1’s sure winning strategy at s9 is to select action a1, which leads to the P2

state s8. From there, the only subjectively rationalizable action for P2 is b1, which leads the game

to visit the fake target. It is important to note that action a2 at state s9 is stealthy since it is

subjectively rationalizable for P2 but not deceptive sure winning for P1, as it would lead to state

s6 from which P1 does not possess a strategy to prevent the game from reaching either s0 or s1.

Now, consider states s2 and s5. State s5 is a stealthy deceptively sure winning state for P1

because the only greedy strategy available to P2 at s5 selects action b1, which leads to the fake

target s7. Note that a strategy that selects b2 at s5 is not greedy because s5 and s2 have ranks equal

to 1. Similarly, state s2 is not stealthy deceptively sure winning state for P1 because the only

greedy strategy at s2 is to select action b2 that leads to a true final state s0, which P1 aims to

prevent.

3.3.4 Stealthy Deceptive Almost-Sure Winning Strategy

In this section, we examine Problem 2 under the almost-sure winning criterion when

players employ randomized strategies. Unlike the result from Sec. 3.3.5, we find that there is no

clear advantage of either fakes or traps over the other. This difference stems from the fact that,

when using randomized strategies, the players are not required to use rank-reducing strategies.

The set of actions subjectively rationalizable for P2 in this case is given by

ŜRAct(s) = {a ∈ A2 | T (s,a) ∈ SWin2(G,F)}, (3-4)

55

s0

s1

s2

s3

s4

s5

s6

s7s8s9

⊤

⊤

b2b1

a1

a2

a2

b2b1

b1

b2

a1
b1

b2

a2

a1

Figure 3-3. Hypergame on graph constructed based on P1 and P2’s perceptual games shown in
Fig. (3-2). Dotted lines depict P2’s subjectively rationalizable actions. The
cyan-colored states are stealthy deceptive sure winning states for P1, whereas the
red-colored states are sure winning for P2.

for any state s ∈ S2∩SWin2(G,F)\F . By definition, all available actions are subjectively

rationalizable for P2 at every other state.

Intuitively, starting from a P2’s almost-sure winning state in G2
X ,Y , every P2 action that

ensures that the game remains within the same region is subjectively rationalizable for P2. This is

because (a) from every state in this region, P2 can enforce a visit to F ∪Y with a positive

probability, and (b) P1 has no strategy to exit this region. Therefore, a randomized strategy that

selects every subjectively rationalizable action at a state with a positive probability is guaranteed

to enforce a visit to F ∪Y with probability one [68]. Such a randomized is an almost-sure winning

strategy for P2 in game G [78, Chapter 10].

Lemma 3-4. Let s ∈ SWin2(G,F)\ (F ∪Y) be a state in P2’s perceptual game G2
X ,Y with the

decoys X ,Y ⊆ SWin2(G,F)\F. Then, the set of subjectively rationalizable actions at s in game G

is equal to that in game G2
X ,Y .

Proof. The lemma follows from two observations. First, by Proposition 4, since

Y ⊆ SWin2(G,F), we have SWin2(G,F) = SWin2(G2
X ,Y ,F ∪Y). That is, P2’s winning region in

G and G2
X ,Y are equal. Second, by Def. 15, the transitions from any state s /∈ Y are identical in the

two games, G and G2
X ,Y . The statement follows by the definition of ŜRAct.

Based on Lma. 3-4 and the knowledge that P2 follows a randomized almost-sure winning

strategy in G2
X ,Y , P1 can construct a MDP to represent the L1-hypergame H1 by marginalizing the

56

true game G1
X ,Y with P2’s randomized almost-sure winning strategy. Since P1 does not know P2’s

choice of its strategy, P1 would assume, in the worst case, that P2’s randomized strategy may

choose any subjectively rationalizable action at a given state with positive probability. This results

in the following hypergame MDP (adapted from [68]).

Definition 17 (Hypergame MDP). Given the true game G1
X ,Y and the function ŜRAct that maps

every state s ∈ SWin2(G,F) to the set of subjectively rationalizable actions for P2 at s, the

hypergame MDP that represents L1-hypergame H1(X ,Y) is the following tuple,

H̃1(X ,Y) = ⟨S̃,A, T̃X ,Y ,X ∪Y ⟩,

where

• S̃ = SWin2(G,F) is P2’s sure winning region in G. At P1 states in S̃1 = SWin2(G,F)∩S1,

P1 chooses the next action strategically. Whereas, the states in S̃2 = SWin2(G,F)∩S2 are

nature states. At a nature state, the next state is chosen at random according to a predefined

probability distribution.

• T̂X ,Y : S̃×A→D(S̃) is a transition function defined as follows: any state s ∈ X ∪Y is a sink

state. At a state s ∈ S̃1, we have T̂X ,Y (s,a,s′) = 1 if and only if s′ = T (s,a). At a state

s ∈ S̃2, we have T̂X ,Y (s,a,s′)> 0 if and only if a ∈ ŜRAct(s) and s′ = T (s,a). Otherwise,

T̂X ,Y (s,a,s′) = 0.

• X ∪Y is the set of states representing P1’s reachability objective.

It follows by construction that an almost-sure winning strategy of P1 in the hypergame

MDP to visit X ∪Y is a stealthy deceptive almost-sure winning strategy.

Theorem 3-4. P1 can guarantee a visit to X ∪Y from a state s ∈ SWin2(G,F) in the true game

G1
X ,Y if and only if P1 has an almost-sure winning strategy to visit X ∪Y from the state s in

H̃1(X ,Y).

57

With this, we can prove the key result of this section: When players use randomized

strategies and the games are analyzed under almost-sure winning condition, fake targets are

equally valuable as traps.

Theorem 3-5. For any Z ⊆ SWin2(G,F)\F, we have DASWin1(Z, /0) = DASWin1(/0,Z).

Proof. By Lma. 3-4, the hypergame MDPs H1(Z, /0) and H1(/0,Z) are identical. Therefore, P1’s

almost-sure winning regions in the two hypergames are equal.

Since the fake targets and traps are equally valuable, Alg. 3-1 can be used to place the

decoys in this setting by replacing DSWin1(X ,Y) with DASWin1(X ,Y) on line 6 and 12 of

Alg. 3-1. However, in this case, the complexity of the algorithm is O((V +E)2(M+N)2) since

the algorithm for computing the almost-sure winning region in the hypergame MDP has a time

complexity of O((V +E)2) [78].

We conclude this section by establishing that P1 may benefit more from deception when

playing against P2 using an almost-sure winning strategy than when playing against P2 using a

sure-winning strategy in P2’s perceptual game.

Theorem 3-6. For any X ,Y ⊆ SWin2(G,F)\F, we have DASWin1(X ,Y)⊆ DSWin1(X ,Y).

Proof. We will establish that, for any state s ∈ DASWin1(X ,Y), it also belongs to DSWin1(X ,Y).

To achieve this, we construct a stealthy deceptive sure-winning strategy πd
1 for P1, given any

stealthy deceptive almost-sure winning strategy πr
1.

Let πd
1 be a deterministic strategy such that πd

1 (s) = a, for some a ∈ Supp(πr
1(s)).

We will show that πd
1 is a stealthy deceptive sure winning strategy for P1. Recall that every

stealthy deceptive sure winning strategy is a greedy, deterministic strategy subjectively

rationalizable for P2 that ensures a visit to X ∪Y in finitely many steps, regardless of the greedy,

deterministic strategy followed by P2.

(πd
1 is subjectively rationalizable for P2). πd

1 is subjectively rationalizable for P2

whenever πd
1 (s) ∈ SRAct(s). This is indeed the case because the following three conditions hold

58

for all P1 state s ∈ DASWin1(X ,Y) by definition: (i) πd
1 (s) ∈ Supp(πr

1(s)), (ii)

Supp(πr
1(s))⊆ ̂SRAct(s), and (iii) ̂SRAct(s) = SRAct(s).

(πd
1 is greedy). The strategy πd

1 is greedy because every action enabled at a P1 state

s ∈ DASWin1(X ,Y) is rank-reducing. This is because every state s ∈ DASWin1(X ,Y) is also a

member of SWin2(G,F) and Alg. 2-1 includes a P1 state s in SWin2(G,F), if and only if all

actions from s are rank-reducing.

(πd
1 induces a visit to X ∪Y). We establish that, given any greedy, deterministic P2 strategy

πd
2 , every path ρ ∈ OutcomesĤ1(X ,Y)(s,π

d
1 ,π

d
2) visits X ∪Y within a finite number of steps. First,

we note that OutcomesĤ1(X ,Y)(s,π
d
1 ,π

d
2)⊆ OutcomesĤ1(X ,Y)(s,π

r
1,π

r
2) holds for any randomized

strategy πr
2 of P2. This is true because of two facts: (i) πd

1 (s) ∈ Supp(πr
1(s)), by definition, and (ii)

πd
2 (s) ∈ Supp(πr

2(s)), which is true because ̂SRAct(s)⊆ SRAct(s) holds for all P2 states. Second,

we note that, since πr
1 is a stealthy deceptive almost-sure winning strategy, every path in

OutcomesĤ1(X ,Y)(s,π
r
1,π

r
2) eventually visits X ∪Y . Clearly, it cannot visit F because all states in

F are sink states. Therefore, no path in OutcomesĤ1(X ,Y)(s,π
d
1 ,π

d
2) visits F . Since both the

strategies πd
1 and πd

2 are greedy, it follows by Lma. 3-3 that ρ must visit X ∪Y within finitely

many steps.

Fig. (3-4) illustrates a toy example where the subset relation is strict, i.e., DASWin1(X ,Y)

⊊ DSWin1(X ,Y). In this example, F = {s0} is a singleton final state that P2 aims to reach,

X = {s1} is the set of traps, and Y = {s2} is the set of fake targets. This results in

DSWin1({s1},{s2}) = {s1,s2,s4} and DASWin1({s1},{s2}) = {s1,s2}. Notice that s4 is stealthy

deceptively sure winning for P1, but not stealthy deceptively almost-sure winning. This is

because, when players use greedy deterministic strategies, b is the only action at s4 which is

subjectively rationalizable for P2. Since T (s4,b) = s2 and s2 is a fake target, the game is

guaranteed to visit X ∪Y . However, when players used randomized strategies, both the actions b

and c are subjectively rationalizable for P2 at s4. Thus, the game may reach s5 with a positive

probability, from where P1 has no strategy to prevent the game from reaching F .

59

s0

s1 s2 s3

s4 s5 s6

a a a

a b
c a

a

Figure 3-4. A scenario where DASWin1(X ,Y)⊊ DASWin1(X ,Y).

3.3.5 Compositional Synthesis for Decoy Placement

Given a placement of traps and fake targets, Thm. 3-3 provides a way to compute P1’s

deceptive sure winning region given a fixed decoy allocation X ,Y . Next, we formulate a

combinatorial optimization problem in which P1 aims to maximize the size of its stealthy

deceptive sure winning region by allocating traps and fake targets.

X∗,Y ∗ = argmax
X ,Y⊆SWin2(G,F)\F

|DSWin1(X ,Y)|

subject to: |X | ≤M, |Y | ≤ N,X ∩Y = /0.

(3-5)

In Eq. (3-5), every distinct choice of X ,Y defines a hypergame, Ĥ1(X ,Y), which must be

solved to determine the size of DSWin1(X ,Y). A naı̈ve approach to solving Eq. (3-5) is to

compute DSWin1(X ,Y) for each valid placement of X ,Y and then select a set X ∪Y for which

|DSWin1(X ,Y)| is the largest. However, this approach is not scalable because number of

hypergames to solve is
(|SWin2(G,F)\F |

M+N

)(M+N
M

)
, which grows rapidly with the size of game and

number of decoys to place. To address this issue, we introduce a compositional approach to decoy

placement in which we show that, when certain conditions hold, the decoy allocation problem can

be formulated as a constrained supermodular maximization problem, for which a

(1− 1
e)-approximation can be computed in polynomial time using a greedy algorithm [83].

The key insight behind our algorithm is that fake targets could be more advantageous than

traps. This enables us to decouple the placement of traps and fake targets.

Theorem 3-7. For any subset Z ⊆ SWin2(G,F)\F, we have DSWin1(Z, /0)⊆ DSWin1(/0,Z).

60

Proof. Recall that the stealthy deceptive sure winning region in the true game is determined by

computing P1’s sure winning region to reach the decoys in the hypergame. Therefore, the

winning regions DSWin1(Z, /0) and DSWin1(/0,Z) have an attractor structure. Given any

X ,Y ⊆ SWin2(G,F)\F , let DSWini
1(X ,Y) denote the i-th level of attractor of the sure winning

region DSWin1(X ,Y) in hypergame Ĥ1(X ,Y).

We will prove by induction that, for any n≥ 0,

DSWinn
1(Z, /0)⊆ DSWinn

1(/0,Z). (3-6)

(Base Case). The statement is true for n = 0 because DSWin0
1(Z, /0) = DSWin0

1(/0,Z) = Z.

(Induction Step). Let k ≥ 0 be an integer. Suppose that Eq. (3-6) holds for n = k. To show

that every state s ∈ DSWink+1
1 (Z, /0) is an element of DSWink+1

1 (/0,Z), we consider two cases.

First, when s is a P1 state, P1 has an action in game G2
Z, /0 at state s to visit DSWink

1(Z, /0) in

one step. Since all P1 actions at a state in SWin2(G,F) are subjectively rationalizable for P2, due

to the induction hypothesis, using the same action at s would lead the game G2
/0,Z to visit

DSWink
1(/0,Z) in one step. Hence, every P1 state in DSWink+1

1 (Z, /0) is an element in

DSWink+1
1 (/0,Z).

Next, consider the case when s is a P2 state. Since s ∈ DSWink+1
1 (Z, /0), in game G2

Z, /0, P1

can ensure the game to visit Z in at most (k+1)-steps. Now, consider the state s in game G2
/0,Z .

Since G2
Z, /0 = G, the rank of s in G (and thus G2

Z, /0) must be smaller than or equal to k+1 in game

G2
/0,Z due to Corollary 1. That is, s ∈ DSWink+1

1 (/0,Z).

Thm. 3-7 shows that any greedy algorithm to place traps and fake targets to solve Problem 2

must place fake targets before placing the traps.

In our previous work [4], we have studied Problem 2 when only traps are placed, i.e., Y = /0.

Hence, we first investigate how to place the fake targets to maximize the deceptive sure-winning

region for P1, given only fake targets. Then, we propose an algorithm to solve Problem 2 under

sure winning condition by sequentially placing the fake targets and traps.

61

The concept of compositionality is important in developing a greedy algorithm for

Problem 2. It enables us to incrementally place fake targets one by one, thereby constructing

DSWin1(/0,Y) in an incremental manner. The following proposition states that DSWin1(/0,Y)

supports compositionality.

Proposition 5. Consider three placements of fake targets given by Y1 = {s1}, Y2 = {s2}, and

Y = Y1∪Y2. Let DSWin1(/0,Y1) and DSWin1(/0,Y2) be P1’s deceptive sure-winning regions in the

hypergames Ĥ1(/0,Y1) and Ĥ1(/0,Y2), respectively. Then, P1’s deceptive sure-winning region

DSWin1(/0,Y) in the hypergame Ĥ1(/0,Y) is equal to the sure-winning region for P1 in the

following game:

Ĥ1(/0,Y) = ⟨SWin2(G2
/0,Y ,F),A, T̂/0,Y ,

DSWin1(/0,Y1)∪DSWin1(/0,Y2)⟩,

where P1’s goal is to reach the target set DSWin1(/0,Y1)∪DSWin1(/0,Y2) and P2’s goal is

to prevent P1 from reaching the target set.

Proof. It is observed that the underlying graphs of the three deceptive reachability games, namely

Ĥ1(/0,Y1), Ĥ1(/0,Y2), and Ĥ1(/0,Y), are identical. They only differ in terms of the reachability

objectives of P1. Applying Proposition 3, we have

DSWin1(/0,Y) = DSWin1(/0,DSWin1(/0,Y1)∪DSWin1(/0,Y2)),

which concludes the proof.

Corollary 2. Given a set of fake targets, Y ⊆ SWin2(G,F)\F and a state s ∈ SWin2(G,F)\F,

we have

DSWin1(/0,Y)∪DSWin1(/0,{s})⊆ DSWin1(/0,Y ∪{s})

Proof. Follows immediately by Proposition 3 and the property of the sure-winning region that the

goal states of a reachability objective are a subset of the sure-winning region.

62

Thus, if we consider the size of DSWin1(/0,Y) to be a measure of the effectiveness of

allocating the states in SWin2(G,F) as fake targets, then Corollary 2 states that the effectiveness

of adding a new state to a set of decoys is greater than or equal to the sum of their individual

effectiveness. In other words, DSWin1 operator is superadditive [84, 85].

Let ⊎ represent the operation of composing two deceptive sure winning regions of P1. That

is, given any subset Y ⊆ SWin2(G,F)\F and a state s ∈ SWin2(G,F)\F ,

DSWin1(/0,Y ∪{s}) = DSWin1(/0,Y)⊎DSWin1(/0,{s}).

With this notation, the problem of optimally placing the fake targets becomes equivalent to

identifying a set Y ∗ ⊆ SWin2(G,F)\F such that,

Y ∗ = argmax
Y⊆SWin2(G,F)\F

∣∣∣∣∣⊎
s∈Y

DSWin1(/0,{s})

∣∣∣∣∣ (3-7)

subject to: |Y | ≤ N.

Let g(Y) =
∣∣∣∣ ⊎
s∈Y

DSWin1(/0,{s})
∣∣∣∣ be a function that counts the number of P1’s deceptive

sure winning states when the set Y ⊆ SWin2(G,F)\F is allocated as fake targets.

Theorem 3-8. The following statements are true.

(a) g is a monotone, non-decreasing, and superadditive function.

(b) g is submodular if, for all Y ⊆ S\F and any s ∈ S\F, we have

DSWin1(/0,Y)∪DSWin1(/0,{s}) = DSWin1(/0,Y ∪{s}).

(c) g is supermodular if, for all Y ⊆ S\F and any s1,s2 ∈ S\F and s1 ̸= s2, we have

DSWin1(X ,Y ∪{s1})∩DSWin1(X ,Y ∪{s2}) = DSWin1(X ,Y)

Proof. (a). Since for any set Y ⊆ SWin2(G,F)\F and any state s ∈ SWin2(G,F)\ (F ∪Y), we

have DSWin1(/0,Y)∪DSWin1(/0,{s})⊆ DSWin1(/0,Y ∪{s}), DSWin1 is a non-decreasing,

monotone function. Consequently, g is also a non-decreasing monotone. The function g is

63

superadditive because, by Corollary 2, DSWin1(/0,Y)∪DSWin1(/0,{s})⊆ DSWin1(/0,Y ∪{s}).

Therefore, g(Y)+g({s})≤ g(Y ∪{s}).

(b). When DSWin1(/0,Y ∪{s}) = DSWin1(/0,Y)∪DSWin1(/0,{s}), we have

g(Y) =
∣∣∣∣ ⊎
s∈D

DSWin{s}

∣∣∣∣= ∣∣∣∣ ⋃
s∈D

DSWin{s}

∣∣∣∣, which is submodular [86].

(c). The function g is supermodular if and only if

g(Y ∪{s1})+g(Y ∪{s2})−g(Y)≤ g(Y ∪{s1,s2}).

Given that DSWin1(/0,Y ∪{s1})∩DSWin1(/0,Y ∪{s2}) = DSWin1(/0,Y) holds for any holds for

any Y ⊆ SWin2(G,F) and any s1,s2 ∈ SWin2(G,F), the LHS counts every state in

DSWin1(/0,Y ∪{s1})∪DSWin1(/0,Y ∪{s2}) exactly once. On the other hand, RHS counts the

number of states in DSWin1(/0,Y ∪{s1,s2}). By Proposition 5, we know that RHS may contain

states that are neither in DSWin1(/0,Y ∪{s1}) nor DSWin1(/0,Y ∪{s2}).

Given the properties of g(Y), we now consider the incremental placement of traps. The

following proposition, which follows from Proposition 3, provides insight into the construction of

the stealthy deceptive sure winning region when traps are placed given a fixed placement of fake

targets.

Proposition 6. Let DSWin1({s1},Y) and DSWin1({s2},Y) be P1’s deceptive sure-winning

regions in the hypergames Ĥ1({s1},Y) and Ĥ1({s2},Y), respectively. Then, P1’s deceptive

sure-winning region DSWin1({s1,s2},Y) in the reachability game Ĥ1({s1,s2},Y) is equal to the

sure-winning region for P1 in the following game:

Ĥ1({s1,s2},Y) = ⟨SWin2(G2
X ,Y ,F),A, T̂ ,

DSWin1({s1},Y)∪DSWin1({s2},Y)⟩,

where P1’s goal is to reach the target set DSWin1({s1},Y)∪DSWin1({s2},Y) and P2’s goal is to

prevent P1 from reaching the target set.

64

Now, recall the following theorem regarding the exclusive placement of traps is known from

[4].

Theorem 3-9. For any X ⊆ SWin2(G,F), let f (X) 7→ N be a function that counts the size of

DSWin1(X , /0). The following statements are true.

(a) f is a monotone, non-decreasing, and superadditive function.

(b) f is submodular if, for all X ⊆ S\F and any s ∈ S\F, we have

DSWin1(X , /0)∪DSWin1({s}, /0) = DSWin1(X ∪{s}, /0).

(c) f is supermodular if, for all X ⊆ S\F and any s1,s2 ∈ S\F and s1 ̸= s2, we have

DSWin1(X ∪{s1}, /0)∩DSWin1(X ∪{s2}, /0) = DSWin1(X , /0)

Given Theorems 3-7, 3-8 and 3-9, the optimal placement of decoys reduces to that of

sequentially solving two superadditive function maximization problems, first maximize g(Y) and

then maximize f (Y). However, to the best of our knowledge, there are no approximation

algorithms available for maximizing superadditive functions that are applicable to our setting.

Therefore, we present Alg. 3-1 that returns an (1−1/e)-approximate solution to Problem 2 when

either condition (b) or (c) in Theorems 3-8 and 3-9 are satisfied. This greedy algorithm is based

on the GreedyMax algorithm for maximizing monotone submodular-supermodular functions in

[83] and extends the algorithm discussed in [4, Algorithm 1].

Alg. 3-1 starts with empty sets of states X and Y . It first constructs the set Y by adding a new

fake target in each iteration. In every step, a new fake target s is selected from the set of potential

decoys D such that its inclusion, along with the previously chosen fake targets, maximizes the

coverage of P1’s deceptive sure-winning region over the states in SWin2(G,F). The process

continues until either a total of N fake targets have been selected, or the set of potential decoys is

empty. Subsequently, the algorithm proceeds to construct X using a similar procedure, where the

set of fake targets Y remains fixed, and a new trap is added to X in each iteration.

Complexity. Let V,E denote the number of states and transitions in the underlying graph of

the hypergame H1(X ,Y). Then, the time complexity of Alg. 3-1 is O((V +E) · (M+N)2). This is

65

Algorithm 3-1 Greedy algorithm for decoy placement.
Inputs: ⟨S,A,T,F⟩: Base game, M: Number of traps to placed, N: Number of fake targets to be

placed.
Outputs: X ,Y : Greedy placement of traps and fake targets.

1: X ← /0, Y ← /0
2: while N−|Y |> 0 do
3: D←{s ∈ SWin2(G,F) | s /∈ (F ∪Y)}
4: if D is empty then
5: Exit While
6: end if
7: d← argmaxs|DSWin1(/0,Y ∪{s})|
8: Y ← Y ∪{d}
9: end while

10: while M−|X |> 0 do
11: D←{s ∈ SWin2(G,F) | s /∈ (F ∪X ∪Y)}
12: if D is empty then
13: Exit While
14: end if
15: d← argmaxs|DSWin1(X ∪{s},Y)|
16: X ← X ∪{d}
17: end while
18: return X ,Y

because the DSWin1 computation, which uses Alg. 2-1, has a complexity of O(V +E) [21], and

Alg. 3-1 must solve |SWin2(G,F)|− |F |− j hypergames to determine the j-th decoy.

3.3.6 Experimental Evaluation

We use two experiments to illustrate the key results from our paper. The first experiment

employs a gridworld example to demonstrate the proposed Alg. 3-1 and the effectiveness of the

decoy placement. The second experiment highlights several key properties of the decoy

placement determined by Alg. 3-1.

3.3.6.1 Tom and Jerry Gridworld

In this experiment, we consider a gridworld example featuring the characters Tom and Jerry

as shown in Fig. (3-5). The 7×7 gridworld has 2 cheese blocks. Tom is equipped with M mouse

traps and N fake cheese blocks to protect the real cheese from Jerry. Jerry’s objective is to steal

the cheese without getting caught by Tom (Tom captures Jerry when they are simultaneously in

the same cell). On the other hand, Tom’s objective is to place the decoys to safeguard the real

66

Figure 3-5. Gridworld example with Tom and Jerry with 2 cheese blocks.

cheese strategically. To achieve this, Tom intends to behave in a way that would either lead to

Tom capturing Jerry or induce Jerry to visit a decoy. Jerry is assumed to be unaware of the

presence of decoys. Both Tom and Jerry can occupy any cell in the gridworld that does not

contain an obstacle (black cells). To avoid trivial cases, we assume that the game does not start

with Jerry in a cell containing real cheese or a decoy.

A state in the base game between Tom and Jerry is represented as (tom.row, tom.col,

jerry.row, jerry.col, turn) that captures the positions (a position is expressed in the

row-column format) of Tom and Jerry and the player who selects the next action at that state. At

any state, the player whose turn it is to play chooses an action from the set {N,E,S,W} and moves

to the cell in the intended direction. If the result of the action leads the player to a cell outside the

bounds of gridworld or an obstacle, the player returns to the same cell where it started from.

We observe the effect of decoys on Tom’s stealthy deceptive sure winning region in the

gridworld configuration shown in Fig. (3-5) with two blocks of real cheese placed at cells (1,6)

and (4,6). We consider three scenarios: (A) where M = 2 and N = 0, (B) where M = 1 and

N = 1, and (C) where M = 0 and N = 2. This results in the base game’s underlying graph having

4050 states and 16200 transitions. We use Alg. 3-1 for each scenario to determine the decoy

placement under the sure winning criteria. The algorithm solves a total of 85 hypergames during

the two iterations of the While loop (specifically, on lines 6 and 13). The first iteration explores

67

43 candidate cells without obstacles or real cheese to determine the placement of the first decoy,

while the second iteration explores 42. The algorithms are implemented in Python 3.101, and

executed on a Windows 10 machine with a core i7 CPU running at 3.30GHz and equipped with

32GB of memory.

To measure and compare the effectiveness of a given placement of traps and fake targets

during the iterations of Alg. 3-1, we introduce a real-valued metric called value of deception.

Intuitively, the value of deception measures the proportion of P2’s winning states in the base game

G that become winning for P1 in the hypergame Ĥ(X ,Y) or H̃(X ,Y). Under the stealthy deceptive

sure winning condition, when SWin2(G,F) ̸= F , the value of deception is defined as follows:

VoD(X ,Y) =
|DSWin1(X ,Y)|
|SWin2(G,F)|− |F |

If SWin2(G,F) = F , i.e., when no states apart from the final states are winning for P2 in G, we set

VoD(X ,Y) = 0. The value of deception is defined analogously when the interaction is analyzed

under an almost-sure winning criterion.

We analyze the key insights obtained by solving 85 hypergames and examining the

resulting value of deception. Fig. (3-7) depicts a heatmap, where the value displayed in each cell

denotes the value of deception achieved by allocating the next decoy in that cell. The value in

each cell is computed based on the map Z constructed during each of the two iterations of

Alg. 3-1. The figure includes two heatmaps each for the three scenarios (A), (B), and (C).

Specifically, Figures 3-7a and 3-7b depict the heatmaps corresponding to the first and second

iteration of the algorithm for scenario (A). Similarly, Figures 3-7c and 3-7d show the two

heatmaps for scenario (B), and Figures 3-7e and 3-7f for scenario (C).

In Fig. (3-7a), the cell values indicate the value of deception achieved by placing the first

trap at each respective cell. For instance, the value 0.28 in cell (1,5) indicates the value of

deception obtained by placing the first trap at that location. The first trap is positioned at (1,5) as

it is the highest value. In Fig. (3-7b), the cell values indicate the combined value of deception

1 The source code is available at https://github.com/abhibp1993/decoy-allocation-problem.

68

https://github.com/abhibp1993/decoy-allocation-problem

achieved by placing the second trap at a given cell in addition to the trap selected in the first

iteration. For instance, the value 0.5 in cell (5,5) represents the value of deception obtained by

placing two traps: the first trap at location (1,5) (as determined in the first iteration) and the

second trap at (5,5). The second trap is placed there since the maximum deception value is

observed at (5,5). The heatmaps in Figures 3-7c-3-7f are understood in a similar manner.

We now discuss key observations and insights from Fig. (3-7). First, observe that when only

traps are placed (Figures 3-7a, 3-7b, and 3-7d), the value of deception increases as we move

closer to the real cheese. This is because traps cut Jerry’s winning paths to real cheese. For

instance, in Fig. (3-7a), suppose that Jerry starts from a cell in row 1 and Tom starts from a cell

(4,1). Then, Jerry has a sure winning strategy to steal the cheese at (1,6). Now, consider two

placements of the first trap: (1,1) and (1,5). The trap at (1,1) will be effective only if Jerry starts

at (1,0) since if Jerry begins from a cell to the right of (1,1), she is guaranteed to visit (1,6)

without being trapped or caught. On the other hand, the trap at (1,5) will be effective whenever

Jerry starts between (1,0) and (1,4) because every path induced by any of her sure winning

strategies to visit (1,6) from these initial positions passes through (1,5). Hence, placing a trap at

(1,5) yields a higher value of deception than placing it at (1,1).

In contrast, fake cheese attracts Jerry by providing an alternative to visiting the real cheese.

Therefore, when placing the fake cheese, the value of deception increases as we move closer to

the fake cheese. For instance, in Fig. (3-7c), we notice that the values in cells (2,3) and (3,3) are

higher than their neighboring cells. This is because when fake cheese is present at either of these

cells, Jerry believes there are three cheese blocks in the game instead of two. Consequently, when

Tom starts at (5,1) and Jerry starts at any cell with row coordinates of 0,1,2 and column

coordinates of 0,1,2, Jerry’s subjectively rationalizable sure winning strategy would lead him to

visit either the fake cheese at (2,3) or (3,3) instead of the real cheese at (1,6) or (4,6). Since

highest value of deception is observed at cell (3,3), Tom places the first fake cheese at that cell.

The results also confirm our conclusion that fake targets have a higher value than traps

when the game is analyzed under sure winning condition. To see this, compare the value of

69

deception for any cell in Fig. (3-7d) and Fig. (3-7f), and Fig. (3-7d) and Fig. (3-7f). We observe

that the value in the second heatmap (where a fake cheese is placed in the cell) is greater than or

equal to that in the first heatmap (where a trap is placed in the cell).

3.3.6.2 Decoy Placement over Randomly Generated Game on Graphs

In this second experiment, we compare the effectiveness of placing traps versus fake targets

under stealthy, deceptive sure and almost-sure winning conditions. We employ randomly

generated graphs to explore interesting case studies. Each game consists of 150 states, of which

75 are P1 states, and the remaining are P2 states. At every state in each game, we randomly select

an integer between 1 and 5 to determine the number of actions enabled at that state. Subsequently,

the next state on performing each enabled action at a given state is determined at random.

With these exploratory experiments, we focus our analysis on four games on graphs as these

present interesting results. For each of the four games, we use Alg. 3-1 to determine decoy

placement and compute the corresponding value of deception under four conditions: (i) placing 5

traps under stealthy deceptive sure winning condition, (ii) placing 5 fake targets under stealthy

deceptive sure winning condition, (iii) placing 5 traps under stealthy deceptive almost-sure

winning condition, and (iv) placing 5 fake targets under stealthy deceptive almost-sure winning

condition. Fig. (3-6) depicts the variation in the value of deception for cases (i)-(iv) as we

progressively introduce the traps or fake targets in four selected games.

Figures 3-6a and 3-6b present instances that align with our theoretical findings. Since the

dashed blue line remains at par or below the solid blue line, we observe that the value of deception

obtained by placing fake targets is greater than or equal to that obtained by placing traps, both

under stealthy deceptive sure winning condition. This confirms the findings in Thm. 3-7.

Furthermore, the overlapping of the red dotted line and green lines indicates that placing traps and

fake targets under stealthy deceptive almost-sure winning condition yield the same value of

deception, which is aligned with the findings of Thm. 3-5. Lastly, the outcomes also align with

the implications outlined in Thm. 3-6, as both the red-dotted and green lines consistently remain

positioned below the blue lines. Consequently, the value of deception achieved under the sure

70

(a)

(b)

(c)

(d)

Figure 3-6. The value of deception obtained by placing traps and fake targets under stealthy
deceptive sure and almost-sure winning conditions in four selected games.

winning condition is consistently greater than or equal to that attained under the almost-sure

winning condition. Fig. (3-6b) presents a special case wherein the intrinsic topology of the game

graph leads to a convergence of deception values across all four cases (i)-(iv).

Figures 3-6c and 3-6d present instances where the results appear to diverge from our

theoretical predictions. In Fig. (3-6c), we encounter a situation where the value of deception

achieved under the sure winning condition by strategically placing traps is greater than the value

obtained by placing fake targets. This outcome seemingly contradicts the assertions made in

Thm. 3-7. In Fig. (3-6d), we encounter another scenario where the value of deception obtained by

71

deploying either traps or fake targets under the almost-sure winning condition exceeds the value

attained by placing fake targets under the sure winning condition, thereby deviating from the

anticipated results stipulated in Thm. 3-6. However, these disparities can be attributed to the

greedy approach employed by Alg. 3-1. For instance, in Fig. (3-6c), Alg. 3-1 determined the

states s22, s80 as the first two fake targets and s101, s74 as the first two traps. To understand

these choices, let us examine the values of deception for the following placements:

VoD(/0,{s22}) = 0.7500, VoD(/0,{s101}) = 0.6805

VoD({s22}, /0) = 0.4166, VoD({s101}, /0) = 0.6805

VoD(/0,{s101,s74}) = 0.8055, VoD(/0,{s22,s80}) = 0.7916

We observe that the value of deception attained by placing fake targets at s101, s74 is higher

than that obtained by placing them at s22, s80. Thus, we would expect the algorithm to select

the latter states to be the fake targets. However, the Alg. 3-1 follows a greedy approach. Since the

value of deception when the first fake target is placed at s22 is greater than when it is placed at all

other states, including s101, s22 is selected as the first fake target. Given the first fake target, the

choice of the second fake target that yields that maximum value of deception is s80. In other

words, the deviation from theoretical expectations is due to the sub-optimal placement suggested

by the greedy algorithm.

We conclude by noting that the value of deception increases monotonically until the value

of 1.0 is attained. In any game, the value of 1.0 is guaranteed to be achieved if there is no bound

on the number of decoys. In the worst case (for example, consider star topology), a decoy must be

placed at every state for the value of deception to be one.

72

(a) Scenario (A): Value of deception when the first
trap is placed within the given cell.

(b) Scenario (A): Value of deception when first trap
is placed at (1,5) and second trap is placed
within the given cell.

(c) Scenario (B): Value of deception when first fake
cheese is placed within the given cell.

(d) Scenario (B): Value of deception when first fake
cheese is placed at (4,5) and a trap is placed
within the given cell.

(e) Scenario (C): Value of deception when first fake
cheese is placed within the given cell.

(f) Scenario (C): Value of deception when first fake
cheese is placed at (4,5) and the second fake
cheese is placed within the given cell.

Figure 3-7. The values of deception compared by Alg. 3-1 in each of the two iterations to
determine the two decoys for scenarios (A)-(C).

73

CHAPTER 4
SYNTHESIS WITH MISPERCEPTION OF ACTION CAPABILITIES

This chapter investigates the synthesis of deceptive winning strategies for the sub-class of

games with incomplete information where P2 misperceives P1’s action capabilities. These

scenarios often arise in various domains, such as football, where the opposing team may be

uncertain about a player’s newly acquired skills before a match, or in economic situations where a

firm may be unaware of another firm developing a similar product.

In a game, when a player realizes deceptive tactics are in play, their subsequent behavior

can be uncertain [87]. There are two potential outcomes in this scenario. The player may opt to

withdraw from the game; for instance, when an attacker learns that the defender has hidden action

capabilities, it may choose to discontinue the attack. Alternately, the player may choose or may

be forced to continue their engagement by adapting their knowledge and, consequently, their

strategy; for instance, in football, the game must continue even after the new capabilities of the

opponent team are revealed. This chapter focuses primarily on investigating the behavior of

players in the latter case.

4.1 Effect of Action Misperception

Consider a reachability game between P1 and P2 characterized by a deterministic

two-player turn-based zero-sum game, G = ⟨S,Act,T,s0,F⟩, as defined in Def. 2. In this game,

P1’s objective is to visit a final state in F . P2’s objective is to prevent the game from reaching a

final state.

In this chapter, we study the game in which P2 does not know the complete action set of P1

at the beginning. Hence, the information structure of the game is captured by the following

assumption.

Assumption 4 (Information Structure). P1 knows its complete action set Act1. P2 misperceives

P1’s action set to be a subset X ⊊ Act1. The components S and F of the game arena G are

common knowledge for both the players.

74

Perceptual games. As a result of Assumption 4, the interaction between P1 and P2 is a game

with incomplete information about action capabilities. Hence, P1 and P2 play different games in

their minds to synthesize their respective winning strategies. P1’s perceptual game is identical to

the true game; ⟨S,Act1∪Act2,T,s0,F⟩. Whereas, P2’s perceptual game is a game under

misperception; ⟨S,X ∪Act2,T,s0,F⟩. Let us formalize the new notation used to distinguish

between the perceptual games of P1 and P2.

Notation 2. Given a subset of P1’s action set, X ⊆ Act1, let G(X) = ⟨S,X ∪Act2,T,s0,F⟩ denote

the deterministic two-player turn-based game on a graph in which P1’s action set X .

Therefore, P1’s perceptual game is G(Act1) and P2’s perceptual game is G(X). Assuming

P1 and P2 to be rational players, they would use the solution approach reviewed in Sec. 2 to

compute their winning strategies in their respective perceptual games. However, P1 is likely to

compute a conservative strategy because P1 over-estimates the information available to P2.

Naturally, we want to know whether P1 can improve its strategy if P1 is made aware of P2’s

current misperception X?

Before we answer the above question, recall that we allow P2’s misperception to evolve

during the game. For instance, what would happen when P2 observes P1 playing an action

a ∈ Act1, which P2 did not believe to be in P1’s action set? We might argue that P2 will at least

add a new action a1 to its perceived action set, X , of P1. Thus, the new perception would be

X ∪{a1}. Also, P2 might be capable of complex inference. That is, on observing that P1 can

perform an action a1, P2 might infer that P1 must be capable of actions a2 and a3, thus, updating

its perception set to X ∪{a1,a2,a3}. To capture such inference capabilities, we introduce a

generic perception update function for P2.

Definition 18 (Inference Mechanism). A deterministic inference mechanism is a function

κ : 2Act1×Act1→ 2Act1 that maps a subset of actions X ⊆ Act1 and an action a ∈ Act1 to an

updated subset of actions Y = κ(X ,a) such that a ∈ Y .

If P2’s misperception evolves during the game, then P1 must strategize when to reveal an

75

action that is not currently known to P2. By doing so, P1 may partially control the evolution of

P2’s perception to its advantage. Such a strategy, where P1 intentionally controls P2’s

misperception, is a deceptive strategy, by definition. We formalize our problem statement.

Problem 3. Consider a reachability game G in which Assumption 4 holds. If P1 is informed of

the initial misperception of P2, X0, and its inference mechanism η , then synthesize a deceptive

strategy using which P1 can satisfy its reachability objective under sure and almost-sure winning

conditions.

In particular, we want to investigate whether the use of deception is advantageous for P1 or

not. We say P1 gets advantage with deception if at least one game state that is not

sure/almost-sure winning for P1 in the game without deception becomes winning for P1 with the

use of deception.

4.2 Dynamic Hypergame on Graph

When two players play different games in their minds, their interaction can be modeled as a

hypergame [27]. While P1 and P2 play different games in their minds as per Problem 3, their

interaction is distinguished by the ability of P2 to update its game as P2 learns about P1 actions

that were previously unknown to him. The hypergame model described in Sec. 2.3 is insufficient

to model this situation. Hence, we propose a new model called dynamic hypergame that makes

the evolution of P2’s game explicit.

The first-level dynamic hypergame is the tuple of the perceptual games being played by the

players,

H1(X) = ⟨G(Act1),G(X)⟩,

where, given the current perception of P2, X ⊆ Act1, P1 and P2 respectively solve the games

G(Act1) and G(X) to compute their winning strategies. Notice the dependence of the hypergame

H1(X) on P2’s perception X captures the fact that H1(X) is indeed a dynamic hypergame.

Given that P1 is aware of the P2’s perception, the interaction is modeled as a second-level

hypergame. Specifically, we assume P1 knows X . Therefore, the second-level hypergame is

76

H2 = ⟨H1(X),G(X)⟩. Similar to Ch. 3, we introduce a graphical model called the hypergame on

a graph to represent the dynamic hypergame H2(X).

Definition 19 (Dynamic Hypergame Transition System). Let Γ =℘(Act1) be the powerset of

P1’s action set. The dynamic hypergame on graph representing the second-level dynamic

hypergame H2(X) is the tuple,

H= ⟨V,Act,∆,v0,F⟩,

where

• V = S×Γ is the set of hypergame states,

• Act = Act1∪Act2 is the set of actions of P1 and P2,

• ∆ : V ×Act→V is the transition function such that (s′,X ′) = ∆((s,X),a) if and only if

s′ = T (s,a) and X ′ = κ(X ,a),

• v0 ∈V is an initial state,

• F = F×Γ is the set of final states.

Intuitively, the hypergame on a graph can be viewed as unrolling the game with different

information states of P2.

Example 4 (Running Example). Consider the game graph as shown in Fig. (4-1). The circle

states {s1,s3} are P1 states and the square states {s0,s2} are P2 states. The objective of P1 is to

reach to the final states set F = {s0} from the initial state s2. P1’s action set is Act1 = {a1,a2} and

P2’s action set is Act2 = {b1,b2}.

The sure (or almost-sure) winning region of P1 in the game is SWin1 = {s0,s1}, shown in

Fig. (4-1) as blue states. This is intuitively understood as follows. P1 can win from state s1 by

choosing the action a1. However, the states SWin2 = {s2,s3}, shown in Fig. (4-1) as red states,

are losing for P1 because P2 has a strategy to indefinitely restrict the game within SWin2 by

always selecting action b2 at state s2.

77

s0

s1 s2

start

s3⊤

a1

a2

b1

b2 a1 a2

Figure 4-1. An example game on graph. The state space is divided into two parts: blue states
SWin1 = {s0,s1} are sure (almost-sure) winning for P1, and red states
SWin2 = {s2,s3} are sure (almost-sure) winning for P2.

Suppose that the action a1 of P1 is initially not known to P2. Thus, at the beginning of the

interaction, P2’s perception of P1’s action set is X0 = {a2} and its perceptual game is the game

G(X0) as shown in Fig. (4-2). Notice that Fig. (4-2) does not include edges corresponding to

action a1. On the other hand, P1’s perceptual game is same as the true game G(Act1) shown in

Fig. (4-1). Given that the final states set {s0} is not reachable in G(X0), P2 misperceives both of

its actions, b1 and b2, to be safe to play at state s2. However, in reality, only the action b2 is safe in

the true game, G1.

Moreover, when P1 is aware of P2’s misperception X0, P1 may compute a deceptive

strategy which would not use a1 unless the game state is s1. Because, if P1 uses a1 at s3 then P2

will update its perception to X1 = Act1 and conclude that action b1 is unsafe to play at state s2. In

this case, P1 will not be able to win the game starting at s2 or s3.

The hypergame corresponding to above interaction is shown in Fig. (4-3). The figure only

shows the reachable states. Every state in the hypergame is represented as a tuple of a game state

and the current perception of P2 at that state. Given X0 = {a2}, two perceptual games of P2:

G({a2}) and G({a1,a2}), are possible. Any hypergame-play that visits the final state (s0,X1) is

winning for P1. Therefore, the hypergame-plays τ1 = (s2,X0)b1(s1,X0)a1(s0,X1) and

τ2 = (s2,X0)b2(s3,X0)a1(s2,X1)b1(s1,X1)a1(s0,X1) are the examples of winning plays for P1.

Interestingly, in the next section, we will show that the play τ2 may never occur if both players act

rationally. However, it is possible for the play τ1 to be observed.

78

s0

s1 s2

start

s3⊤

a2

b1

b2 a2

Figure 4-2. Perceptual game of P2 when P2 misperceives P1’s action set to be X0 = {a2}. The
state space is divided into two parts: the blue state {s0} is perceived by P2 as the only
winning state of P1, and the red states {s1,s2,s3} are perceived by him to be winning
for himself. Due to misperception, this partition is different from the partition in
Fig. (4-1).

4.2.1 P2’s Subjectively Rationalizable Strategy

To design an algorithm to synthesize a deceptive strategy in the hypergameH, we must

reason about P2’s perception and its SR strategy. Because P2 plays a safety game, its strategy in a

game on graph is a permissive strategy. Recall that an action is permissive for a player at a given

state if the player can stay within the winning region by performing that action [88]. However, in

a game with incomplete information, whether a state is perceived to be winning or not depends on

the player’s perception. The following definition characterizes the actions that P2 considers to be

rational given its perceptual game. As the perceptual game of P2 evolves during the interactions,

so does the set of its subjectively rationalizable actions.

Definition 20 (P2’s Subjectively Rationalizable Actions). Let u = (s,X) ∈V2 and v = (s′,X) ∈V2

be two hypergame states such that v = ∆(u,b) for some b ∈ Act2. Then, the set of P2’s

subjectively rationalizable actions at u is the set

SRAct2(u) = {a ∈ Act2 | s′ ∈ SWin2(X)}.

In words, the set of P2’s subjectively rationalizable actions at a given state u = (s,X) is the

set of permissive actions for P2 in the perceptual game with action set X .

We make two important observations about P2’s subjectively rationalizable actions. First,

P2’s action has no effect on its perception. Therefore, if P2’s perception was X at a state u ∈V2

79

(s0,X1)

(s1,X0) (s2,X0)

start

(s3,X0) (s1,X1)

(s2,X1) (s3,X1)

⊤

a1

a2

b1

b2 a1a2

a1

a2 b1

b2

a1

a2

Figure 4-3. The dynamic hypergame on graph. The state space is divided into three parts: blue
states {(s0,X1),(s1,X0),(s1,X1)} are sure (almost-sure) winning for P1, and red states
{(s2,X1),(s3,X1)} are sure (almost-sure) winning for P2 regardless of whether P1
uses deception or not. The green states {(s2,X0),(s3,X0)} are almost-sure winning,
but not sure winning, for P1 when P1 uses deception.

then, for any b ∈ Act2, P2’s perception at a state v = ∆(u,b) is also X . This observation follows

from Def. 18.

The second observation states that if an action of P2 is permissive at a some state in which

P2 knows the complete action set of P1 then it is subjectively rationalizable under any perception.

This is because a sure winning action of P2 remains a sure winning action regardless of P2’s

misperception.

Proposition 7. If a P2 action b ∈ Act2 is subjectively rationalizable at the state (s,Act1) then it is

subjectively rationalizable at any state (s,X) ∈V2 for any X ⊆ Act1.

It is noted that the converse of Proposition 7 may not hold. That is, under misperception, P2

might misperceive its non-permissive action to be permissive. Consequently, if P1 could trick P2

into selecting such a non-permissive action, P1 may force the game from a P1’s losing state to a

P1’s winning state in the true game, G(Act1). In the next two sections, we investigate when P1

has a strategy to enforce P2 into choosing a non-permissive action under sure and almost-sure

winning conditions.

80

4.2.2 Deceptive Sure Winning Strategy

Given the notion of P2’s subjectively rationalizable strategy, we formally define a deceptive

sure winning strategy of P1. In contrast to Ch. 3.1, we do not require the deceptive strategy to be

stealthy since we want P1 to influence P2’s perception.

Definition 21 (Deceptive Sure Winning Strategy). A memoryless, deterministic strategy

π1 : V → Act1 is said to be a deceptively sure winning for P1 at a state v ∈V if and only if, for any

memoryless, deterministic subjectively rationalizable strategy µ : V2→ Act2 of P2 and for any run

ρ ∈ Outcomes(v,π1,µ), we have Occ(ρ)∩F ≠ /0.

In Def. 21, P1 reasons only about all possible subjectively rationalizable strategies of P2,

which is in contrast to Def. 3 where P1 reasons about all possible strategies of P2. A hypergame

state v ∈V from which P1 has a deceptively sure winning strategy is called as a deceptively sure

winning state. The exhaustive set of deceptively sure winning states is called the deceptively sure

winning region, denoted by DSWin1. Note that deceptive sure winning region cannot be defined

for P2 because P2 does not know the hypergame, H.

The following theorem proves a negative result that deceptive sure winning strategy

provides P1 with no advantage over a non-deceptive sure winning strategy.

Theorem 4-1. Let DSWin1 ⇂S= {s ∈ S | v ∈ DSWin1 and s = v ⇂S} be the set of projection of the

deceptively sure winning states onto the game state space. It holds that

SWin1(Act1) = DSWin1 ⇂S.

To prove Thm. 4-1, we need the following lemma which states that every non-deceptively

sure winning state is also deceptively sure winning.

Lemma 4-1. If a game state s ∈ S is a non-deceptive sure winning state for P1 then, for any

X ∈ Γ, the hypergame state v = (s,X) is a deceptively sure winning state for P1.

Now, we prove Thm. 4-1.

81

Proof (Thm. 4-1). (⊆) By Proposition 7, at given any state v = (s,X) ∈V2 such that

s ∈ SWin2(Act1), every permissive action of P2 at s is also subjectively rationalizable at v for any

X ⊆ Act. Therefore, P2’s subjectively rationalizable strategy µ at v may select a truly permissive

action. By definition, v cannot be sure winning for P1.

(⊇) Follows from Lma. 4-1.

4.2.3 Deceptive Almost-Sure Winning Strategy

The fundamental reason behind why deception does not yield advantage under sure winning

condition is that the players use deterministic strategies. If there exists a truly permissive action at

a P2 state, there is a possibility that P2’s subjectively rationalizable strategy chooses that action

every time that state is visited. In this section, we study P1’s deceptive strategy under almost-sure

winning condition in which players use randomized strategies. In contrast to sure winning

condition, we show that P1 may gain advantage under almost-sure winning condition.

Assumption 5. At a state v ∈V2, P2 selects every subjectively rationalizable action

b ∈ SRAct2(v) with a positive probability. That is, Supp(µ(v)) = SRAct2(v).

Now, we formalize the notion of deceptive almost-sure winning strategy.

Definition 22 (Deceptive Almost-Sure Winning Strategy). Given a hypergame state v ∈V , a

memoryless, randomized strategy π is said to be deceptive almost-sure winning strategy for P1 if

and only if for every memoryless, randomized subjectively rationalizable strategy µ of P2

satisfying Assumption 5, the probability that a run ρ ∈ Outcomes(v,π,µ) in the hypergameH

satisfies the condition Occ(ρ)∩F ≠ /0 is one.

The states at which P1 has a deceptive almost-sure winning strategy are called as deceptive

almost-sure winning states. The exhaustive set of all deceptive almost-sure winning states is

called deceptive almost-sure winning region and is denoted by DASWin. Note that deceptive

almost-sure winning region cannot be defined for P2 because P2 does not know the hypergame,

H.

82

We propose Alg. 4-1 to compute the deceptive almost-sure winning region for P1. The idea

behind Alg. 4-1 is to identify and exploit the states v = (s,X) at which P2’s subjectively

rationalizable actions SRAct2(v) includes some of its non-permissive actions in the true game,

G(Act1). To this end, we define the following sub-routines:

DAPre1
1(U) = {v ∈V1 | ∃a ∈ Act1 s.t. ∆(v,a) ∈U}, (4-1a)

DAPre2
1(U) = {v ∈V2 | ∀b ∈ SRAct2(v) s.t. ∆(v,b) ∈U}, (4-1b)

DAPre1
2(U) = {v ∈V1 | ∀a ∈ Act1 s.t. ∆(v,a) ∈U}, (4-1c)

DAPre2
2(U) = {v ∈V2 | ∀b ∈ SRAct2(v) s.t. ∆(v,b) ∈U}. (4-1d)

Proposition 8. If a game state s ∈ S is a non-deceptive almost-sure winning state for P1 then, for

any γ ∈ Γ, the hypergame state v = (s,γ) is a deceptively almost-sure winning state for P1.

Alg. 4-1 works as follows. Following Proposition 8, we initialize the algorithm with

Z0 = ASWin1(Act1)×Γ and then iteratively compute the sets Ck and Zk+1 for k = 0,1, . . . until a

fixed-point is reached. In the k-th iteration, the set Ck ⊆V \Zk is computed using sub-routine

Safe-2, which identifies the subset of states in V \Zk from which P1 has no strategy to exit

V \Zk. In other words, Ck is a set of states in which P2 can enforce P1 to stay. The sub-routine

Safe-2 starts with Y0 =V \Zk and iteratively computes Yj for j = 0,1, . . . by identifying (i)

W1 = DAPre1
2(Yj): P1 states within Yj, from which any action a ∈ Act1 leads to a state in Yj, and

(ii) W2 = DAPre2
2(Yj): P2 states within Yj, from which any of its subjectively rationalizable action

a ∈ SRAct2(v) leads to a state in Y j. Next, the set Zk+1 is computed using the sub-routine Safe-1,

which identifies the subset of states in V \Ck from which P1 is ensured to visit Zk in one-step. The

sub-routine Safe-1 starts with Y0 =V \Ck and iteratively computes Yj for j = 0,1, . . . by

identifying (i) W1 = DAPre1
1(Yj): P1 states within Yj from which P1 has an action to enter Yj in

one step, and (ii) DAPre2
1(Yj): P2 states within Yj from which any subjectively rationalizable

action of P2 leads to a state in Yj. It is observed that as k increases, the set Ck shrinks while the set

Zk expands. Intuitively, this is because the states in Ck may have transitions leading outside Ck,

83

while remaining within V \Zk. If a state, say v ∈V \Zk that is not in Ck, is included in Zk+1, then

all states in Ck that have a transition going to v are excluded from Ck+1 and have a potential to be

included in Zk+2. However, once the fixed-point is reached, say in iteration K, we show that all

deceptive almost-sure winning states of P1 are included in ZK . A deceptive almost-sure winning

strategy can then be computed based on the proof of Thm. 4-3.

Example 5 (Example (4) contd.). Consider the hypergame graph as shown in Fig. 4-3. Recall

from Example (4) that Almost-Sure Winning (ASW) region is ASWin1(Act1) = {s0,s1},

therefore, we have Z0 = {(s0,X2),(s1,X2),(s1,X1)} (we omit (s0,X1) as it is unreachable). The

subjectively rationalizable actions for P2 are SRAct2((s2,X1)) = {b1,b2} and

SRAct2((s2,X2)) = {b2}.

Iteration 1 of DASW. The first step is to compute C0, i.e.the subset of V \Z0 which P2 perceives

to be safe for himself. The Safe-2 sub-routine takes 3 iterations to reach a fixed-point, at the end

of which C0 = {(s2,X2),(s3,X2)}. The next step is to compute Z1, which the largest subset of

V \C0 in which P1 can stay indefinitely. The Safe-1 sub-routine takes 2 iterations to reach a

fixed point. In its first iteration, DAPre1
1 adds a state (s3,X1) and DAPre2

1 adds a state (s2,X1) to

Z1. The interesting observation here is that (s2,X1) is added because the actions b1 and b2 are

subjectively rationalizable actions for P2, both of which lead to a state in V \C0.

Iteration 2 of DASW. The fixed-point of DASW algorithm is reached in this iteration with

Z2 = {(s0,X2), (s1,X2),(s1,X1),(s2,X1),(s3,X1)}. The states (s2,X1) and (s3,X1) are identified as

the deceptive almost-sure winning states for P1.

Using intuition from Example (5) with the observation that ASWin1(Act1)⊆ DASWin1 ⇂S

holds for every hypergameH by definition, we formalize our first key result. It establishes that

using action deception could be advantageous to P1.

Theorem 4-2. Let DASWin1 ⇂S= {s ∈ S | v ∈ DASWin1 and s = v ⇂S} be the set of projection of

the deceptively almost-sure winning states onto the game state space. There exists a hypergame

84

Algorithm 4-1 Deceptive almost-sure winning region for P1.
1: function DASW(H)
2: Z0 = ASWin1(Act1)×Γ

3: repeat
4: Ck = Safe-2(V \Zk)
5: Zk+1 = Safe-1(V \Ck)
6: until Zk+1 = Zk
7: return DASWin1 = Zk
8: end function
1: function Safe-i(U)
2: Y0 =U
3: repeat
4: W1 = DAPre1

i (Yk)
5: W2 = DAPre2

i (Yk)
6: Yk+1 = Yk∩ (W1∪W2)
7: until Yk+1 = Yk
8: return Yk
9: end function

H for which ASWin1(Act1) is a strict subset of DASWin1 ⇂S.

Next, we proceed to prove the correctness of Alg. 4-1 by showing that from every state in

DASWin1, we can construct a deceptive almost-sure winning strategy for P1 to ensure a visit to

final states with probability one. We first prove two lemmas.

Lemma 4-2. In the i-th iteration of Alg. 4-1, P1 has a strategy to restrict the game indefinitely

within Zi, for all states in Zi.

Proof. (v ∈V2). For a P2’s state in Zi, every state v′ = ∆(v,b) for a subjectively rationalizable

action b ∈ µ(v) of P2 is in Zi, by definition of DAPre2
1. Hence, no action of P2 at any state v ∈ Zi

can lead the game state outside Zi.

(v ∈V1). For every P1’s state in Zi, there exists an action a ∈ A such that the successor

v′ = ∆(v,a) is in Zi, by definition of DAPre1
1. Hence, P1 always has an action, consequently a

strategy, to stay within Zi.

Lemma 4-3. For every state v ∈ Zi+1 \Zi added in the i-th iteration of Alg. 4-1. The, there exists

an action that leads into Zi.

85

Proof. Given any state v ∈V at the beginning of the i-th iteration, observe that it would belong to

either Ci−1, Zi or V \ (Ci−1∪Zi). We will prove the statement by showing that the every new state

added to Zi+1 has at least one transition into Zi.

Consider i-th iteration of Alg. 4-1. The sub-routine Safe-2 will add a P1 state v ∈V1 \Zi to

Ci if all the actions of P1 stay within V \Zi. Similarly, Safe-2 will include a P2 state v ∈V2 \Zi in

Ci if all subjectively rationalizable actions of P2 lead to a state within V \Zi. Therefore, a state

that is not included in Ci must have at least one action leading outside V \Zi, i.e.entering Zi. In the

next step, the sub-routine Safe-1 may add new states to Zi+1 from the set V \Ci. But, all states in

V \Ci have an action entering Zi. Hence, all new states added to Zi+1 satisfy the statement.

The following observation follows immediately from Lma. 4-3.

Corollary 3. For every i≥ 0, we have Zi ⊆ Zi+1.

From Lma. 4-3, it is easy to see that P1 has a strategy to reach Zi from a state added to Zi+1

in one-step. However, this is not true for P2. From a P2 state in Zi+1, there exists a positive

probability to reach Zi because of Assumption 5. In the next theorem, we prove a stronger

statement which states that from every state in Zi+1, P1 can not only reach Zi with positive

probability, but with probability one.

Theorem 4-3. From every state v ∈ DASWin1, P1 has a strategy to satisfy ϕ with probability one.

Proof. For any v ∈ Zi, i > 1, P1 has a strategy to stay within Zi indefinitely, by Lma. 4-2.

Furthermore, by Lma. 4-3, the probability of reaching to a state v′ ∈ Zi−1 from v is strictly

positive. Thus, given a run of infinite length, the probability of reaching Zi−1 from Zi is one. By

repeatedly applying this argument, the probability of reaching Z0 from Zi is one.

The deceptive almost-sure winning strategy can be constructed based on the proof of

Thm. 4-3. At a P1 state v ∈V1, if i≥ 1 is the smallest integer such that v ∈ Zi, then

π(v) = {a ∈ Act1 | v′ = ∆(v,a) and v′ ∈ Zi−1} is the deceptive almost-sure winning strategy of P1

at v. Given π(v) is a set, P1 can select any action from this set. We also state the following two

important corollaries that follow from Thm. 4-2 and Lma. 4-3.

86

We conclude this section with the complexity analysis of our proposed algorithm.

Theorem 4-4. The space and time required by Alg. 4-1 scales quadratically with the size of the

hypergameH.

4.3 Case Study: Capture-the-Flag Game on Gridworld

In this section, we illustrate the advantages of using action deception using a simplified

version of capture-the-flag game [89] played over a 5×5 gridworld, like the one shown in

Fig. (4-4). The gridworld is partitioned into P1 (blue) and P2 (red) territories. P1’s objective in

the game is to capture both the flags from P2’s territory, while that of P2 is to prevent P1 from

capturing the flags. We restrict P2 to move only within its own territory. Under this setting, we are

interested to determine the number of game states from which P1 has a deceptive sure

(almost-sure) winning strategy and compare it with the sizes of the non-deceptive sure

(almost-sure) winning regions. We introduce the following notion of value of deception, denoted

by VoD to quantify the advantage gained by P1 by using deception.

Figure 4-4. An example of capture-the-flag game between P1 (superman) and P2 (devil) played
over a 5×5 grid world.

87

VoD=



|DSWin1⇂S|−|SWin1(Act1)|
|SWin2(Act1)| under deceptive sure winning condition

|DASWin1⇂S|−|ASWin1(Act1)|
|ASWin2(Act1)| under deceptive almost-sure winning condition

0 if |ASWin2(Act1)|= 0

(4-2)

To understand Eq. (4-2), first, recall that P1 can win from any state in ASWin1(Act1)

regardless of whether P1 uses deception or not. Thus, the benefit of deception can be quantified

by counting the number of P2’s winning states in the game with complete, symmetric information

(i.e. in ASWin2(Act1)) that P1 can win from by using deception. Notice that VoD takes a value

between 0 and 1. VoD= 0 represents the case when P1 gains no advantage by using deception.

VoD= 1 represents the case in which P1 gains maximum benefit that is possible by using

deception, i.e.P1 can leverage P2’s misperception to win from all of P2’s winning states in

ASWin2(Act1).

To demonstrate the applicability of our proposed approach to a broad range of reachability

objectives, we specify P1’s objective using a scLTL formula. We consider the following two

scLTL objectives for P1 in this experiment.

1. P1 must capture both FLAG1 and FLAG2 in any order.

♢FLAG1︸ ︷︷ ︸
Eventually capture FLAG1

∧ ♢FLAG2︸ ︷︷ ︸
Eventually capture FLAG2

(4-3)

2. P1 must first capture FLAG1 and then capture FLAG2. Until then, P1 must avoid colliding

with P2.

(¬FLAG2∧¬collide)UFLAG1︸ ︷︷ ︸
don’t collide or collect FLAG2 until FLAG1 is collected

∧ ¬collideUFLAG2︸ ︷︷ ︸
don’t collide until FLAG2 is collected

(4-4)

The dynamics of the capture-the-flag game are as follows. Both the players can move in 4

88

compass directions: N, E, S, W. P2 cannot enter any cell containing a wall or a fence, and

presumes this to be the case for P1 as well. However, initially unknown to P2, P1 has the

following special actions: JumpN, JumpE, JumpS, JumpW and Cut. Using the Jump action P1

can jump over a wall in a free cell (i.e.a cell not containing an obstacle, a wall or a fence) adjacent

to the wall in the direction of the jump. Using the Cut action, P1 can convert a cell containing a

fence into a free cell. Note that once a cell containing a fence becomes free, P2 can visit that cell.

Given the dynamics, we construct game and hypergame graphs. We define the game state

(denoted by s) and hypergame state (denoted by v) as follows:

s :
(
(p1.x,p1.y,p2.x,p2.y),(f1.cut,f2.cut),turn,q

)
v :

(
(p1.x,p1.y,p2.x,p2.y),(f1.cut,f2.cut),turn,q,gamma

)
where

• p1.x, p2.y, p1.x, p2.y represents the position of P1 and P2 in gridworld;

• f1.cut, f2.cut represents whether fence 1 and fence 2 (cells (0,3) and (3,3) in

Fig. (4-4)) are cut or intact;

• turn represents whether it is P1’s or P2’s turn at that state;

• q is the DFA state that encodes the progress P1 has made towards satisfying its scLTL

objective;

• gamma is a subset of P1’s action set known to P2.

For simplicity, we use the following indices to represent different subsets of P1’s action

sets. Hence, gamma takes values from 0 to 3, with gamma= 3 representing the game in which P2

has complete information.

89

0 : N,E,S,W,

1 : N,E,S,W,Cut,

2 : N,E,S,W,JumpN,JumpE,JumpS,JumpW,

3 : N,E,S,W,JumpN,JumpE,JumpS,JumpW,Cut,

The game on graph G(Act1) is constructed using the product construction described in

Ch. 2. The edges of hypergame graph follow from Def. 19. A game or hypergame state is marked

as a final state whenever q is a final state in the DFA. Fig. (4-5) shows the DFAs corresponding to

scLTL formulas in Eq. (4-3) and Eq. (4-4). In the figure, the final states of DFA are shown with

two concentric circles.

The result of applying Alg. 4-1 on the game and hypergame graph for objective

ϕ1 = ♢FLAG1∧♢FLAG2 is tabulated in Table. 4-1 and that for objective

ϕ2 = ((¬FLAG2∧¬collide)UFLAG1)∧ (collideUFLAG2) is tabulated in Table. 4-2.

However, under the deceptive almost-sure winning condition, we observe that P1 can win

from 9395 out of 9423 hypergame states. That is, P1 has a deceptive almost-sure winning strategy

from 6370 out of 6388 game states, which is 6370−6133 = 237 more states than the case when

deception is not used. This results in VoD= 0.9294. Similarly, for the second objective, where P1

has must capture flags in certain order and ensure that certain safety constraints are also satisfied,

we observe that P1 can win from 6947 out of 6965 hypergame states. That is, P1 has a deceptive

almost-sure winning strategy from 4868 out of 4880 game states which is 4868−4724 = 144

more states than the number of states when deceptive mechanism is not used, thereby, resulting in

VoD= 0.9230.

90

Table 4-1. Comparison of deceptive and non-deceptive winning states under sure and almost-sure
winning condition for P1’s objective ϕ1 = ♢FLAG1∧♢FLAG2.

|V | |E| |F | |DASWin1| |DASWin1 ⇂S | ASWin2 VoD

SW(G) 6388 15016 1686 - 6133 255 -

DASW(H) 9423 22181 2238 9395 6370 18 0.9294

1start

2

3

0

a b

a b

⊤

¬a

¬a

¬a∧¬b

(a) DFA of ϕ1 = ♢a∧♢b

1start 2

3

0

¬a∧¬b∧¬c

a∧¬b∧¬c

b∨ c

¬b∧¬c b

c

⊤

⊤

(b) DFA of ϕ2 = ((¬b∧¬c)Ua)∧ (cUb)

Figure 4-5. The sub-figure (a) shows the DFA equivalent to the scLTL formula given in Eq. (4-3)
and sub-figure (b) shows the DFA equivalent to scLTL formula in Eq. (4-4). For
brevity, we use a = FLAG1, b = FLAG2 and c = collide in the figure.

Table 4-2. Comparison of deceptive and non-deceptive winning states under sure and almost-sure
winning condition for P1’s objective
ϕ2 = ((¬FLAG2∧¬collide)Ua)∧ (collideUFLAG2).

|V | |E| |F | |DASWin1| |DASWin1 ⇂S | ASWin2 VoD

SW(G) 4880 11449 1686 - 4724 156 -

DASW(H) 6965 16372 2238 6947 4868 12 0.9230

91

CHAPTER 5
SYNTHESIS WITH MISPERCEPTION OF SPECIFICATIONS

This chapter investigates the synthesis of deceptive winning strategies for the sub-class of

games with incomplete information where P2 misperceives P1’s true objective. We explore two

approaches for analyzing these games. In the first section, we focus on characterizing the state

space and synthesizing strategies when facing an ignorant or incapable P2, who does not update

its perception during their interaction. In this setting, P2 is assumed to know a partial objective of

P1, which it regards as P1’s true objective. And, because of its ignorance or incapability, P2’s

perception of P1’s objective remains constant during their interaction. We differentiate this case

from situations where P1 deliberately prevents P2 from becoming aware of deception by labeling

the synthesized strategy as opportunistic, as it capitalizes on the opportunities arising from P2’s

ignorance or incapability.

In the second section, we consider an informed P2, who is aware of its misperception of

P1’s objective and maintains a hypothesis set regarding the possible objectives of P1. In addition,

we equip P2 with an inference mechanism, using which P2 updates its hypothesis by observing

P1’s behavior in the game as well as its counter-strategy.

5.1 Opportunistic Strategies in Games with Specification Misperception

5.1.1 Effect of Specification Misperception on Ignorant P2

Consider an interaction between P1 and P2 characterized by a deterministic two-player

turn-based zero-sum game, G = ⟨S,Act,T,AP,L⟩, as defined in Def. 1. In this interaction, P1 aims

to satisfy an scLTL formula ϕ comprising of a public component ϕ1 and a private component ϕ2,

i.e.ϕ := ϕ1∧ϕ2. The adversarial agent, P2, only knows the public component ϕ1 and believes that

P1’s aim is to satisfy ϕ1. Therefore, P2’s objective is to prevent P1 from satisfying ϕ1. Formally,

the information structure in the interaction is characterized by the following assumption.

Assumption 6 (Information Structure). P1 knows her complete objective ϕ := ϕ1∧ϕ2. P2 knows

only the public component of P1’s objective, ϕ1. The components S,Act,AP and L of the game

arena G are commonly known to both the players.

92

As a result of Assumption 6, the interaction between P1 and P2 is a game with incomplete

information about payoffs/specifications. Hence, P1 and P2 construct different games in their

minds. Since P1 knows her true objective, she constructs a perceptual game as the product G⊗A,

where A is the DFA representing the language of scLTL formula ϕ . On the other hand, P2

constructs his perceptual game as the product G⊗A1, where A1 is the DFA representing the

language of scLTL formula ϕ1.

Notation 3. Given an scLTL formula ϕ , let G(ϕ) denote the deterministic two-player turn-based

game on a graph in which P1’s objective is to satisfy ϕ .

Following the discussion in Sec. 2.3, the first-level hypergame representing the interaction

between P1 and P2 is given by H1 = ⟨G(ϕ),G(ϕ1)⟩. Since P1 is aware that ϕ2 is her private

information, she is also aware that P2 misperceives her true objective. Therefore, their interaction

is, in fact, a second-level hypergame.

H2 = ⟨H1,G(ϕ1)⟩. (5-1)

Given the hypergame H2, we are interested to know whether P1 can exploit her superior

knowledge to gain advantage over P2? Specifically, we want to determine if there exists an

opportunistic strategy for P1 that exploits her superior knowledge to win from a state in G from

which P1 cannot win using the standard sure winning strategy1 as defined in Def. 3.

Problem 4. Given a game G and an objective ϕ = ϕ1∧ϕ2 for P1 following Assumption 6,

determine the set of states and the strategy using which P1 can satisfy ϕ1,ϕ2,ϕ with a high

likelihood by exploiting her superior knowledge about the private and public components of ϕ

and P2’s misperception.

Problem 4 poses two challenges to decision making. The first challenge is to identify those

states in which P2’s subjectively rationalizable strategy is different from his rational strategy due

1 The standard sure winning strategy is synthesized in the game G(ϕ) since it does not exploit P1’s superior knowl-
edge.

93

to his misperception. From these states, there is a possibility that P1 might have a strategy to

exploit the difference to enforce a win from an otherwise losing state. Secondly, it is possible that,

from a state, either ϕ1 or ϕ2 is satisfiable but not both. In such a situation, which sub-formula

should P1 satisfy?

5.1.2 Static Hypergame on Graph

We begin by defining a graphical model of the hypergame H2 that incorporates the superior

knowledge of P1. Using this model, we can compute P2’s subjectively rationalizable strategy and

use it to synthesize an opportunistic strategy for P1.

To construct the graphical model of hypergame H2, observe that the language of ϕ is the

same as the intersection of languages of ϕ1 and ϕ2. Hence, a DFA that represents the union of

languages of ϕ1 and ϕ2 is sufficient to determine if a given word satisfies ϕ1,ϕ2 or ϕ . Let

A1 = ⟨Q1,Σ,δ1,q10,F1⟩ and A2 = ⟨Q2,Σ,δ2,q20,F2⟩ be the DFA representing the languages of

the scLTL formulas ϕ1,ϕ2. The DFA representing the language of ϕ is given by the intersection

product of A1 and A2. We denote it by A=A1⊗A2 = ⟨Q,Σ,δ ,q0,F12⟩, where Q = Q×Q2,

δ ((q1,q2),σ) = (δ (q1,σ),δ (q2,σ)), q0 = (q10,q20) and F = F1×F2.

Definition 23 (Hypergame on a Graph). The hypergame on a graph representing the hypergame

H2 of Eq. (5-1) is a deterministic two-player turn-based game on a graph,

H= ⟨V,Act,∆,v0,F⟩

where

• V = S×Q1×Q2 is the set of states;

• Act is the set of P1 and P2 actions;

• v0 ∈V is an initial state;

• ∆ : (V1×Act1)∪ (V2×Act2)→V is the deterministic transition function that maps a state

v = (s,q1,q2) and an action a ∈ Act to a state v′ = (s′,q′1,q
′
2) = ∆(v,a), where

94

s′ = T (s,a), q′1 = δ1(q1,L(s′)) and q′2 = δ2(q2,L(s′));

• F = (S×F1×Q2)∪ (S×Q2×F2) is the set of final states.

The final states F can be partitioned into three parts: (i) F1 = S×F1× (Q2 \F2): the states

that denote satisfaction of ϕ1 but not ϕ2, (ii) F2 = S× (Q1 \F1)×F2: the states that denote

satisfaction of ϕ2 but not ϕ1, and (iii) F12 = S×F1×F2: the states that denote satisfaction of ϕ ,

that is, they satisfy ϕ1 and ϕ1. Note that the sets F1,F2 and F12 are mutually exclusive and

exhaustive.

5.1.3 Characterization of State Space

The following proposition establishes the equivalence between the sure winning strategies

in the games G(ϕ1),G(ϕ2),G(ϕ) and the hypergameH.

Proposition 9. The following statements hold.

1. There exists a sure winning strategy to visit F1 from a state (s,q1,q2) in the hypergameH if

and only if there exists a sure winning strategy to visit F1 from the state (s,q1) in the game

G(ϕ1).

2. There exists a sure winning strategy to visit F2 from a state (s,q1,q2) in the hypergameH if

and only if there exists a sure winning strategy to visit F2 from the state (s,q2) in the game

G(ϕ2).

3. There exists a sure winning strategy to visit F12 from a state (s,q1,q2) in the hypergameH

if and only if there exists a sure winning strategy to visit F from the state (s,q1,q2) in the

game G(ϕ).

Since P2 is only aware of the public component ϕ1 of P1’s true objective ϕ , he would play

an subjectively rationalizable strategy to prevent the game from reaching the final states

F1∪F12 = S×F1×Q2 that denote satisfaction of ϕ1. However, due to misperception, P2 is

unaware that P1 may have a preference over visiting the subset F12 over visiting F1. As a result,

intentionally P2’s subjectively rationalizable strategy neither prevents P1 from satisfying ϕ2 nor

95

does it restrict P1 from satisfying her more preferred outcome. But could it unintentionally

prevent P2 from achieving ϕ2 or ϕ?

To see how P2’s unawareness affects the interaction, consider the partition of V induced by

the sure winning regions of the three sub-games: G(ϕ1),G(ϕ2) and G(ϕ). Since visiting any state

in F1∪F12 denotes satisfaction of ϕ1, by Proposition 9, SWin1(F1∪F12) is the set of winning

states in the game G(ϕ1). Similarly, SWin1(F2∪F12) is the set of winning states in the game

G(ϕ2), and SWin1(F12) is the set of winning states in the game G(ϕ). The containment relation

among the sure winning regions follows immediately.

Proposition 10. SWin1(F12)⊆ SWin1(F1∪F12) and SWin1(F12)⊆ SWin1(F2∪F12).

Since the deterministic two-player zero-sum games are determined (Proposition 1), the

containment relation between the sure winning regions of P2 follows from Proposition 10.

Corollary 4. SWin2(F12)⊇ SWin2(F1∪F12) and SWin2(F12)⊇ SWin2(F2∪F12).

Corollary 4 yields two key insights. The first insight, which solidifies our hypothesis, is that

P2 can win from a smaller number of states using his subjectively rationalizable rationalizable

strategy than he could if he had complete information about P1’s objective. The second insight is

that P2 could unintentionally prevent P1 from satisfying the private component of P1’s objective,

ϕ2. This is because P2’s subjectively rationalizable strategy prevents the game from reaching

F1∪F12, which includes a subset of final states, F12, that denote satisfaction of ϕ2. For example,

consider 3 states {v1,v2,v3} such that s1 is P2 state with actions a1,a2,a3 that transitions the

game to v1,v2,v3, respectively. Suppose that v2 ∈ F1 and v3 ∈ F12. Then, P2’s subjectively

rationalizable strategy is to choose a1 at state s1 since both actions a2,a3 will lead to P1 satisfying

ϕ1. Therefore, unintentionally P2 prevents the game from satisfying ϕ2 by marking action a3 to

be non-permissive.

We now characterize the state space of the hypergameH by labeling each state in V with a

win-label.

96

Figure 5-1. State space characterization. Arrows indicate whether going from one partition to
another could be rational or not.

Definition 24 (Win-label). the win-labeling function λ : V →{0,1}3 maps every state v ∈V in

the hypergameH to an ordered 3-tuple denoting whether the state v is winning (1) or losing (0)

for P1 in the games G(ϕ1), G(ϕ2), and G(ϕ), respectively.

Intuitively, the win-label for a state v ∈V captures the perception and knowledge of players

about whether they can win and whether their opponent can win from the state v . The first

component of the win-label captures what P2 thinks whereas the whole 3-tuple is known by P1

given her superior knowledge. For example, if a state v ∈V is winning for P1 in the game G(ϕ1)

and the game G(ϕ2), but losing in the game G(ϕ), then its win-label is λ (v) = {1,1,0}.

The win-labeling function can assign to every state v ∈V , a unique label from 23 = 8

possible labels. We analyze each possible label separately to understand which of the objectives

ϕ1,ϕ2 or ϕ should P1 try to satisfy from a state with a particular win-label.

Case I: (λ (v) = (0,0,0)) The state v is losing for P1 in the games G(ϕ1),G(ϕ2) and G(ϕ), i.e.P2

has an subjectively rationalizable sure winning strategy that prevents P2 from satisfying ϕ1.

Therefore, in this case, P1 can try to satisfy only ϕ2, since she will not be able to satisfy

either ϕ1 or ϕ .

Case II: (λ (v) = (0,1,0)) The state is losing for P1 in the games G(ϕ1) and G(ϕ), but winning

97

in game over ϕ2. That is, P2 has an subjectively rationalizable sure winning strategy that

prevents P2 from satisfying ϕ1. Therefore, in this case, P1 must satisfy only ϕ2. It cannot

satisfy either ϕ1 or ϕ .

Case III: (λ (v) = (1,0,0)) The state is losing for P1 in the games G(ϕ2) and G(ϕ), but winning

in game over ϕ1. That is, P2 believes that it has lost the game. In this case, P1 is at least

guaranteed to satisfy ϕ1. But she may have an opportunity to satisfy either ϕ2 or ϕ since

P2’s subjectively rationalizable strategy does not intentionally prevent her from doing so.

Case IV: (λ (v) = (1,1,0)) The state is winning for P1 in the games G(ϕ1) and G(ϕ2), but losing

in game G(ϕ). That is, P2 believes that it has lost the game. This case presents an

interesting decision problem where P1 has to choose between satisfying ϕ1 or ϕ2 since it

does not have a sure winning strategy to satisfy both. However, there may be an opportunity

to satisfy ϕ .

Case V: (λ (v) = (1,1,1)) This is a trivial case, in which P1 can satisfy ϕ by following the

standard sure winning strategy. That is, P1 satisfies ϕ regardless of the strategy and

perception of P2.

Cases VI-VIII: (λ (v) = (0,0,1), (0,1,1), or (1,0,1)) These cases are not possible, because P1

must be winning in both the specifications, ϕ1 and ϕ2, to be winning in ϕ [77, Lma. 1].

5.1.4 Synthesis of Opportunistic Strategy

P2’s subjectively rationalizable strategy. Since P2’s aim is to prevent P1 from satisfying ϕ1,

P2’s subjectively rationalizable strategy is a permissive strategy in his perceptual game.

Conventionally, a permissive strategy is only defined at the winning states of a player. However,

in many real-life situations, the interaction between the players does not terminate even if the

state is sure losing for a player. Hence, without loss of generality, we assume that a player

chooses every available action with a strictly positive probability at a losing state.

98

Therefore, P2’s randomized subjectively rationalizable strategy at a state v ∈V is a

probability distribution over the set M(v) defined as follows:

M(v) =


{a ∈ Act2 | ∆(v,a) ∈ SWin2(F1∪F12)} if λ (v) = (0, ·, ·)

Act2 otherwise

P1’s opportunistic strategy. By knowing P2’s subjectively rationalizable strategy in the

hypergameH, P1 can compute her randomized opportunistic strategy. Intuitively, from a state

v ∈V , we expect an opportunistic strategy to yield at least as much payoff as the sure winning

strategy. If possible, it should yield a higher payoff than P1’s sure winning strategy π12 in G(ϕ).

To formalize this idea, we define payoffs r1,r2,r12 ∈ R+ that P1 receives for satisfying

ϕ1,ϕ2,ϕ , respectively. We assert the condition that r12 ≥ r1 + r2 to capture that satisfying ϕ is

strictly preferred to satisfying either ϕ1 or ϕ2 individually. Given that the interaction is zero-sum,

P2 receives the payoff −r1 if P1 satisfies ϕ1 and a payoff r1 otherwise. Owing to misperception,

P2 incorrectly thinks his payoff when P1 satisfies ϕ2∧¬ϕ1 is also r1.

The relation between r1 and r2 quantifies the preference of P1 to satisfy ϕ1 and ϕ2. When

r1 = r2, then P1 is considered to be indifferent to satisfying either ϕ1 or ϕ2. Otherwise, if r1 > r2,

then ϕ1 is strictly preferred over ϕ2, and vice versa.

As a result, the problem of synthesizing an opportunistic strategy is reduced to maximizing

the payoff in the following MDP constructed by marginalizing the two player game with P2’s

randomized strategy µ .

Definition 25 (Hypergame MDP). Given the hypergame on graphH= ⟨V,Act,∆,F⟩ and P2’s

subjectively rationalizable strategy µ given his perception, the opportunistic planning reduces to

an MDP, defined by

Hµ = ⟨V1∪{sink12,sink1,sink2},Act1∪{stop},P,R⟩,

where V1 = (S1×Q1×Q2) is a set of states where P1 chooses an action. The states

99

sink12 and sink1 are speial absorbing states which denote that P1 will thereafter follow the

respective sure winning strategy in the games G(ϕ) and G(ϕ1). The probabilistic transition

function P and the payoff function R are defined based on the win-label of a state v ∈V1 as

follows,

• λ (v) ∈ (0,0,0): All feasible actions of P1 are enabled at v. The special action stop is not

enabled. Given an action a1 ∈ Act1, the transition probability function is given by

P(v′ | v,a1) = ∑
a2∈Act2

1{v′}(∆(∆(v,a1),a2))) ·µ(v)(a2).

• λ (v) ∈ (1,0,0): Only actions that have zero probability of reaching a state with win-label

(0,0,0) are enabled. In other words, P1 is guaranteed to remain within the winning region

SWin1(F1∪F12). Therefore, ϕ1 will at least be satisfied. The special action stop is

enabled. Given an action a1 ∈ Act1, the transition probability function is given by

P(v′ | v,a1) = ∑
a2∈Act2

1{v′}(∆(∆(v,a1),a2))) ·µ(v)(a2).

For action stop, the game transitions to the absorbing state sink1 with probability one, i.e.

P(sink1 | v,stop) = 1.

after which P1 must switch to its winning strategy in G(ϕ1). The payoff for reaching the

absorbing state sink1 is defined as R(sink1) = r1.

• λ (v) ∈ (0,1,0): Only the special action stop is enabled. Using this action, the game

transitions to the absorbing state sink2 with probability one, i.e.

P(sink2 | v,stop) = 1.

The payoff for reaching the absorbing state sink2 is defined as R(sink2) = r2.

100

• λ (v) ∈ (1,1,1): Only the special action stop is enabled. Using this action, the game

transitions to the absorbing state sink12 with probability one, i.e.

P(sink12 | v,stop) = 1.

The payoff for reaching the absorbing state sink2 is defined as R(sink2) = r2.

• λ (v) ∈ (1,1,0): Any action that does not lead into partition (0,0,0) is enabled. The special

action stop is also enabled. Given an action a1 ∈ Act1, the transition probability function is

given by

P(v′ | v,a1) = ∑
a2∈Act2

1{v′}(∆(∆(v,a1),a2))) ·µ(v)(a2).

For the action stop, P1 transitions to the absorbing state sink1 if r1 ≥ r2 and to sink2

otherwise. The payoff received by P1 on reaching the absorbing state sink1 is R(sink1) = r1

and on reaching the absorbing state sink2 is R(sink2) = r2.

The optimal opportunistic strategy π for P1 is the one that solves

max
π

E

[
T

∑
t=1

R(vt)

]
, (5-2)

where T is the first time when an absorbing state is reached. The rationale behind defining

absorbing states is to provide P1 with a mechanism to decide whether it wants to explore the state

space to find an opportunity or settle for a sub-optimal payoff by satisfying a sub-specification.

We define the set of states {v ∈V | λ (v) ∈ {(0,1,0),(1,1,1)}}∪{sink1,sink12} as absorbing in

the hypergame MDP,Hµ .

Theorem 5-1. There may exist an opportunistic strategy, which satisfies Eq. (5-2), using which

P1 can satisfy ϕ from a state v ∈V \SWin1(F12).

Intuitively, Thm. 5-1 proves our hypothesis that P1 may have a strategy that leverages P2’s

misperception to satisfy ϕ from a state that is sure-losing for P1 to satisfy ϕ , if P2 knew P1’s true

101

objective. Naturally, the opportunistic strategy need not exist from all sure-losing states. The

following theorem establishes that the time and space complexity of computing an opportunistic

strategy is the same as that of reactive synthesis.

Theorem 5-2. The time and space required to synthesize an opportunistic strategy scales linearly

with the size of hypergameH.

It is also noted that the opportunistic synthesis computes a strategy to satisfy ϕ,ϕ1, and ϕ2

in order of preference given by the reward function.

5.1.5 Case Study: Robot Motion Planning

We illustrate our approach using a gridworld example as shown in Fig. (5-2). P1 (blue

agent) is controllable, whereas P2 (red agent) is the adversary. P1’s objective is to visit two

regions, A (green cell) and B, while avoiding obstacles O (black cells). P2’s objective is to prevent

R2D2 from completing her task. However, P2 only knows that P1 wants to visit A. He is unaware

that P1’s objective includes visiting B as well. Hence, letting ϕ1 = ¬O U A and ϕ2 = ¬O U B, the

objective of P1 is ϕ = ϕ1∧ϕ2, whereas P2’s objective is to prevent P1 from satisfying ϕ1. This

defines the information asymmetry in the interaction. The action sets of P1 and P2 are as follows:

Act1 = {N,S,E,1,NE,N1,SE,SW},

Act2 = {N,S,E,1,STAY},

where N, E, ..., SW denote the standard actions to move in 8-neighborhood in a gridworld.

The action STAY allows P2 to remain in the same cell.

Given the 20 obstacle-free cells of gridworld in Fig. (6-2) and the action sets, we construct

the transition system with 20×20×2 = 800 states. The automaton equivalent to ¬O U X for

X = A,B is shown in the Fig. (5-3). We prune unsafe actions that result in P1 to visiting an

obstacle and thus exclude the transitions labeled O and the state 2 in computing the transition

system. Therefore, the hypergameH has 800×2×2 = 3200 states, where we keep track of both

sub-specification using two automata. Consequently, each sub-game, G(ϕ1) and G(ϕ2), has

102

Figure 5-2. Game arena.

800×2×1 = 1600 final states and the game G(ϕ) has 800 final states. Applying Alg. 2-1 for

each of the three games generates the winning regions with sizes: |SWin1(F1∪F12)|= 2491,

|SWin1(F2∪F12)|= 2527, and |SWin1(F12)|= 1831.

Given the three winning regions, we first validate that the state-space is indeed partitioned

in five regions as discussed in Sec. 5.1.3. For every state in theH, we assign a win-label to it by

determining the winning regions in which the state appears. The result is tabulated in 5-1. We

observe that the state-space is partitioned into exactly five regions.

Table 5-1. Partition of game state-space due to information asymmetry.
Partition Number of States
(1, 1, 1) 1831
(1, 1, 0) 181
(1, 0, 0) 479
(0, 1, 0) 515
(0, 0, 0) 194
(1, 0, 1) 0
(0, 1, 1) 0
(0, 0, 1) 0

Using the five partitions, we construct the hypergame MDP as defined in Def. 25. We define

the randomized strategies for P1 as follows: for every state with win-label of (0, ·, ·), we assume µ

to be a uniform distribution over all safe actions; i.e. the actions that, with probability one, lead to

103

1start

2

0
X

¬(X ∨O)

O

⊤

⊤

Figure 5-3. The automaton for ¬O U X , where X ∈ {A,B}.

a state with a win-label of type (0, ·, ·). We define µ by assigning an arbitrary distribution over all

feasible actions from a state within partitions (1, ·, ·). Given the hypergame MDP states and P2’s

strategy µ , the transition probabilities are determined based on win-label of the state and the

corresponding expression for P(v′ | v,a) is provided in Def. 25. We compute the value function

and opportunistic strategy using the value iteration algorithm [90].

Next, we illustrate the decision process in the hypergame MDP. Let the initial configuration

be such that P1 is at the cell (0,2), and P2 is at (4,2) as shown in Fig. (6-2). Therefore, the initial

state in the hypergame MDP is v0 = (((0,2),(4,2),0),1,1). We define the payoff for visiting A as

r1 = 200 and that of visiting B as r2 = 100. With this initial configuration we simulate the

interaction between P1 and P2, where P1 uses the opportunistic strategy π and P2 uses the

strategy µ . We run the simulation for 100 times. We highlight a part of one of the runs obtained

Table 5-2. A decision table for state (((0,2),(4,2),0),1,1) with value 285.03 and strategy to
choose action N.

Act Next State Partition Prob Value

N
(((0, 3), (4, 2), 0), 0, 1) (1, 0, 0) 0.03 288.99
(((0, 3), (3, 2), 0), 0, 1) (1, 0, 0) 0.36 290.20
(((0, 3), (4, 1), 0), 0, 1) (1, 1, 1) 0.61 288.99

E
(((1, 2), (4, 1), 0), 0, 1) (1, 1, 0) 0.25 0
(((1, 2), (3, 2), 0), 1, 1) (1, 0, 0) 0.73 297.41
(((1, 2), (4, 2), 0), 1, 1) (1, 1, 0) 0.02 0

NE
(((1, 3), (3, 2), 0), 1, 1) (1, 0, 0) 0.38 259.42
(((1, 3), (4, 2), 0), 1, 1) (1, 1, 0) 0.18 285.03
(((1, 3), (4, 1), 0), 1, 1) (1, 1, 0) 0.44 299.25

104

from simulation.

v0 = (((0,2),(4,2),0),1,1) with λ (v0) = (1,0,0)

v1 = (((0,3),(3,2),0),0,1) with λ (v1) = (1,0,0)

v2 = (((1,2),(2,2),0),0,1) with λ (v2) = (1,1,1)

Table. 5-2 provides an insight into P1’s decision process. It shows the enabled actions,

possible next states and their respective partitions, the probability of reaching those states and the

value of those states. Based on the value iteration, the value of initial state v0 is 285.03, while the

optimal strategy is to select action N, which has a high likelihood to reach a (1,1,1) state. Note

that by choosing action E, if P1 reaches a state with value 0, then it chooses to settle for

sub-optimal payoff of r1 = 200 by satisfying only ϕ1. Hence, the action N is preferred over E. A

similar argument can be given for the action NE.

We now point out the key advantage of the opportunistic synthesis over reactive synthesis as

highlighted in Thm. 5-1. Observe that the initial state is losing in the game G(ϕ) for P1.

Therefore, if P1 uses reactive synthesis approach, it will give up instantaneously and get no

payoff. On the contrary, with opportunistic synthesis, P1 could leverage the misperception of P2

to start from a losing state in G(ϕ) and satisfy ϕ .

We highlight that the construction of hypergame MDP is such that P1 behaves rationally

and tries to maximize the payoff. Given the initial state in partition (1,0,0), it could have chosen

the stop action and switched to the winning strategy in G(ϕ1) to get a payoff of r1 = 200. Instead,

P1 continues to explore to find an opportunity to get a payoff of r = r1 + r2 = 300.

We conclude this section by counting the number of states with opportunities. This is done

by counting the number of hypergame MDP states with non-zero value. Recall that we label the

absorbing states in the hypergame MDP as absorbing with a fixed payoff. Therefore, they always

have fixed value of one. We find that there are a total of 1245 absorbing states and 312 states with

opportunities. This implies that out of 1600 total states, there are 1600− (1245+312) = 43 states

105

with no opportunities. In other words, not all losing states of P1 in the reactive game G(ϕ) have

opportunities.

5.2 Deceptive Strategies under Specification Misperception

5.2.1 Effect of Specification Misperception on Informed P2

In this section, we consider the case when P2 has incomplete information about P1’s

temporal logic objective and is aware of it. We introduce a hypothesis space for P2, denoted by X .

The set X can be discrete and finite. The set X can be a finite set of scLTL formulas that P2

believes that P1’s true objective is one of these. The hypothesis space X can also be continuous.

For example, each x ∈ X is a distribution over a subset of scLTL formulas Φ so that x(ϕ) is the

probability that P2 believes ϕ ∈Φ to be P1’s true objective. For the time being, we do not restrict

the set X . In practice, a hypothesis space can be constructed from observations of any previous

interactions or from the threat modeling [91] given P2’s understanding of their interaction and

potential objectives of an adversary.

Assumption 7 (Information Structure). The asymmetrical information between players is

introduced as follows:

• P1’s objective is ϕ1.

• P2 does not know ϕ1 but has an initial hypothesis x0 and a hypothesis space X about P1’s

objective.

The assumption describes scenarios commonly encountered in practice for both cooperative

and adversarial interactions. For example, in a contested search and rescue mission, a search team

has a sequence of waypoints that need to be visited according to a temporal order. The opponent

may know the set of waypoints but is unclear about the team’s temporal objective. The problem

we aim to solve is stated informally as follows.

Problem 5. Given an adversarial encounter between P1 and P2 under information asymmetry as

defined by Assumption 7, how to compute a strategy for P1 that maximizes the probability of

satisfying ϕ1 while a rational P2 responds optimally given P2’s knowledge of the game?

106

Next, we introduce the modeling framework of hypergames and present a solution concept

for a class of hypergames to solve P1’s strategy.

5.2.2 Dynamic Hypergame on Graph

To characterize P2’s evolving perceptual game, we introduce an inference function.

Definition 26 (Inference). Assuming P2 has complete observation on the game plays, a perfect

recall inference function η : X×PrefPaths→ X maps a hypothesis x ∈ X and an observation (a

history) h ∈ PrefPaths to a new hypothesis x′ = η(x,h) ∈ X .

Anticipating that P2 will respond with evolving hypothesis, P1 must calculate its moves to

steer P2’s inferred hypothesis and the resulting strategy. For the time being, we assume that P1

knows P2’s inference mechanism and initial hypothesis, and study how P1 can exploit P2’s

incomplete knowledge and inference mechanism for strategic advantage.

We introduce a transition system of P1’s level-1 hypergame to simultaneously capture the

changes in game states given players’ actions and the evolving perceptual game of P2.

Definition 27 (Transition System of P1’s Level-1 Hypergame). Given the transition system

T S = ⟨S,A,P,s0,AP,L⟩, the DFA A= ⟨Q,Σ,δ , ι ,F⟩ that corresponds to P1’s scLTL specification

ϕ1, and P2’s hypothesis space X , the transition system of P1’s level-1 hypergame is a tuple

H= ⟨V,A,∆,(s0,h0,q0,x0),F⟩,

where the components of hypergame transition system are defined as follows.

• V = S×PrefPaths×Q×X is the set of states. Every state v = (s,h,q,x) ∈V has four

components:

– s is the state.

– h ∈ PrefPaths is a history terminating in state s ∈ S.

– q ∈ Q is the automaton state for keeping track of P1’s progress towards satisfying ϕ1.

107

– x ∈ X represents the hypothesis of P2 given the history h.

• A is the set of joint actions.

• ∆ : V ×A→DV is a probabilistic transition function defined as follows. Consider

v = (s,h,q,x) and v′ = (s′,has′,q′,x′), where has′ is the history h appended with the new

action a and state s′,

∆(v′ | v,a) =P(s′ | s,a)1(δ (q,L(s′)) = q′)

·1(η(x,has′) = x′),

where 1(E) is the indicator function that returns 1 if the statement E is true, and 0

otherwise.

• (s0,h0,q0,x0) is the initial state that includes the initial state in the transition system T S, the

current history that consists of the initial state only, i.e., h0 = s0, q0 = δ (ι ,L(s0)), and P2’s

initial hypothesis x0.

• F = S×PrefPaths×F×X is the set of final states for P1.

The transition function is understood as follows: Given a history h ending in the current

state s and a joint action a ∈ A, the probability of reaching the next state s′ is determined by

P(s′ | s,a) in the transition system. Upon reaching s′, P2 updates its hypothesis to x′ = η(x,has′)

(here we assume the entire history is used for this update). Also, the transition in the specification

automaton is triggered to reach state q′ from state q given the label of the new state s′.

It is observed that the hypergame transition system in Def. 27 captures the dynamic

evolution of P2’s viewpoint. The history has time indices implicitly encoded. For example, a

history s0a0s1a1 . . .st is a history up to time step t.

Given P2’s perceptual game evolving given the history and the inference function, P2

employs a Behaviorally Subjectively Rationalizable (BSR) strategy, defined as follows.

108

Definition 28 (Behaviorally Subjectively Rationalizable Strategy). A strategy

π
B,2
2 : PrefPaths→DA2 is behaviorally subjectively rationalizable for P2 if

π
B,2
2 (h) = π

∗,x,2
2 (h),

where x = η(x0,h), and π
∗,x,2
2 : PrefPaths→DA2 is a subjectively rationalizable strategy for P2

in the hypergame H2(x).

Intuitively, playing a BSR strategy means that for any history h, P2 plays the subjectively

rationalizable strategy corresponding to its hypothesis constructed from the history h and its

initial hypothesis. It is noted that the BSR strategy for P2 always exists in the class of

hypergames studied herein. In [43], the author states the condition for the existence of the

subjectively rationalizable strategy as follows: P1 never excludes an action from P2’s action set in

P1’s own perceptual game, where P1 thinks in P2’s perceptual game P2 believes this action is

rationalizable [92] to P2. In the class of hypergames considered, P2’s subjectively rationalizable

strategy exists as P2’s perceptual game is a zero-sum game.

When X is finite, the hypergame transition system has a countably infinite set of states. This

is because a history can be of a finite but unbounded length. The entire history is maintained as a

part of the state due to the general definition of the inference mechanism. In the next section, we

show for some special cases of the interactions, a state aggregation can be performed in the

hypergame transition system to reduce the infinite state space to a finite state space.

5.2.3 Synthesis of Deceptive Strategy

Given that P2 uses a BSR strategy, P1 can play deceptively by influencing P2’s hypothesis

so that P2’s actions given P2’s hypothesis can be advantageous for P1. To make P1’s planning

problem tractable, we introduce inference-equivalent histories so as to aggregate the countably

infinite states of the transition systemH of P1’s level-1 hypergame into a finite state set.

Definition 29 (Inference-equivalent Histories). Given an inference function

η : X×PrefPaths→ X and a hypothesis x, two histories h1 and h2 are said to be (η ,x)-equivalent

109

if η(x,h1) = η(x,h2) and for any h′ ∈ (A×S)+, η(x,h1h′) = η(x,h2h′). The set of histories

equivalent to h ∈ PrefPaths given hypothesis x is denoted by [[h]]x. If the equivalence between

histories can be defined to be independent of the current hypothesis, that is, for any pair of

hypotheses x,x′ ∈ X , if h1,h2 are (η ,x)-equivalent, then h1,h2 are also (η ,x′)-equivalent, then we

say that the two histories h1 and h2 are η-equivalent. The set of histories η-equivalent to

h ∈ PrefPaths is denoted by [[h]].

We consider a subset of dynamic hypergames which satisfy the following assumption.

Assumption 8. 1. The hypothesis space X is discrete and finite.

2. The inference function η has a finite domain. That is, the set of histories are grouped into a

finite set of inference-equivalent classes (see Def. 29).

3. For any x ∈ X , P2 selects a quantal response strategy in the zero-sum game G(x) with a

response parameter known to P12.

4. For any x ∈ X , P2’s strategy in game G(x) is memoryless.

Assumption 8-1) and 8-2) ensure the planning state space inH can be aggregated into a

finite set. Assumption 8-3) enables us to only need to consider one SR strategy for P2 in game

G(x), for each x ∈ X . It is noted that if P2 takes the deterministic SR strategy instead of the

quantal response, there may be multiple strategies. There are two possible approaches to deal

with multiple equilibra. The first one is that P1 must learn from online interaction about which

SR strategy is employed by P2 and adapt P1’s deceptive strategy. However, this adaptive

deception requires further study of online optimization and regret analysis. The second one is that

the deceptive planning algorithm should be robust for a range of possible equilibria strategies

used by P2. Adaptive and robust deceptive planning are future extensions for this work.

Next, we formally state the deceptive planning problem for a subclass of dynamic

hypergames.

2 At each state, the quantal response strategy selects an action that is proportional to the exponential of λ -times the
expected future payoffs from that state given the chosen action. The parameter λ is called the response parameter
[93].

110

Problem 6. Given Assumptions 7 and 8, compute the optimal deceptive strategy for P1 in the

dynamic hypergameH, provided that P2 follows a BSR strategy.

We leverage the hierarchy of reasoning in level-2 hypergames and develop a two-step

approach: Firstly, we construct P2’s BSR strategy according to Def. 28: for each x ∈ X , we solve

P2’s subjectively rationalizable strategy π
∗,x,2
2 in the static hypergame H2(x). P2’s BSR strategy is

computed from the set of subjectively rationalizable strategies given P2’s evolving hypothesis

(see Def. 28). Secondly, we incorporate P2’s BSR strategies into the transition system in Def. 27

to reduce P1’s planning problem into an MDP with a reachability objective, stated next.

Definition 30. Under Assumption 8, the dynamic hypergameH= ⟨V,A,∆,(s0,h0,q0,x0),F⟩

reduces to a finite-state MDP with a reachability objective for P1,

H̃= ⟨Ṽ ,A1, ∆̃,(s0, [[h0]]x0,q0,x0), F̃⟩,

where

• Ṽ is a finite and discrete set of states. Each state ṽ = (s, [[h]]x,q,x) consists of a state s, an

inference-equivalent class given the (η ,x)-equivalent relation, a state q in the DFA, and a

hypothesis x of P2.

• ∆̃ : Ṽ ×A1→D(Ṽ) is defined as follows: For any state ṽ = (s, [[h]]x,q,x), if q = qsink — the

sink state in the DFA A, then state ṽ is a sink state.

Given ṽ1 = (s1, [[h1]]x1,q1,x1) with q1 ̸= qsink, a1 ∈ A1, and ṽ2 = (s2, [[h2]]x2,q2,x2) and

h1(a1,a2)s2 ∈ [[h2]]x2 , then

∆̃(ṽ2 | ṽ1,a1) = ∑
a2∈A2

π
∗,x1,2
2 (a2 | s1)

·P(s2 | s1,(a1,a2))1(δ (q1,L(s2)) = q2).

111

where π
∗,x1,2
2 (a2 | s1) is the probability of P2 selecting action a2 given its current hypothesis

x1 and the current state s1. That is, P2 uses a BSR strategy.

• (s0, [[h0]]x0,q0,x0) ∈ Ṽ is the initial state, given (s0,h0,q0,x0) is the initial state in the

transition systemH.

• F̃ = {(s, [[h]]x,q,x) ∈ Ṽ | q ∈ F} is the set of final states for P1, where F is the set of final

states of DFA A. P1’s goal is to maximize the probability of reaching F̃ .

By construction, if a path ρ in the MDP visits F̃ , then P1 satisfies the scLTL formula ϕ1.

Thus, maximizing the probability of satisfying P1’s specification is equivalent to maximizing the

probability of reaching the set F̃ . The optimal policy for P1 in H̃ is deceptive because by

optimally planning in this MDP, P1 will select actions to influence P2’s belief so that P2 takes

actions that are advantageous for P1 to achieve its goal. We can employ dynamic programming to

solve the optimal value function V : Ṽ → R which satisfies the Bellman optimality condition:

V(ṽ) = max
a∈A1

∑
ṽ′∈Ṽ

∆̃(ṽ′ | ṽ,a)V(ṽ′),∀ṽ ̸∈ F̃ , (5-3)

and

V(ṽ) = 1,∀ṽ ∈ F̃ .

where {V(ṽ) | ṽ ∈ Ṽ} is the set of decision variables. The optimal policy π̃∗1 is computed from the

optimal value function:

π̃
∗
1 (ṽ) = argmax

a∈A1
∑

ṽ′∈Ṽ

∆̃(ṽ′ | ṽ,a)V(ṽ′),∀ṽ ̸∈ F̃ .

The time complexity for solving MDPs with reachability objectives is polynomial in the size of

state space and action space. Here, the size of state space in the MDP is O(|S|×N×|Q|× |X |),

where N is the number of (η ,x)-equivalent classes of histories in the game. The size of the action

space in the MDP is |A1|. Besides using dynamic programming, an MDP with a reachability

112

objective can be solved using probabilistic model checking algorithms ([78, Chapter 10.1.1],

[94]) and existing PRISM toolbox [95].

Remark 2. Given the problem can be of large scale, approximate dynamic programming (ADP)

solutions of MDP can be used to reduce the number of decision variables [96]. For example,

value function approximation in ADP uses a function approximator (such as a neural network) to

approximate the value function, where the decision variables are coefficients of the value

function. In the problem of large scale, it is often the case that the number of coefficients of the

value function approximator is much smaller than the number of states.

To this end, we include Alg. 5-1 to describe how to compute P1’s subjectively rationalizable

strategy in the dynamic hypergames with temporal logic objectives.

Theorem 5-3. Assuming P1’s knowledge about η is correct, the optimal strategy π̃∗1 : Ṽ →DA1

in the MDP H̃ is P1’s subjectively rationalizable strategy in the dynamic hypergame given P2’s

evolving knowledge.

Proof. The construction of H̃ is achieved through marginalizing out P2’s actions given that P2

follows the BSR strategy in the dynamic hypergameH. Thus, optimal planning in H̃ computes

the best response strategy for P1 against P2’s BSR strategy. Any deviation from this best response

strategy will not gain P1 a better outcome.

Remark 3. Assumption 8-4) is not necessary. If P2’s SR strategy π
∗,x,2
2 is not memoryless in the

game G(x) but represented using a finite-state controller (also known as a finite-memory policy),

then we can augment the states in the hypergame transition system in Def. 27 with the states in

the finite-state controller and planning in the augmented state space.

Definition 31 (Value of Deceit). Given the dynamic hypergameH= ⟨V,A,∆,(s0,h0,q0,x0),F⟩,

the value of deceit is defined by

VoD=
PrH̃,π̃∗1 (s0h′ |= ϕ1)

u1(s0,π
∗
1 ,π

∗
2 ,ϕ1)

,

113

Algorithm 5-1 Computation of P1’s subjectively rationalizable strategy.
1: Construct P1’s level-1 hypergameH with T S, A, X , and η .
2: for x ∈ X do
3: Compute P2’s SR strategy π

∗,x,2
2 from game G(x).

4: end for
5: Construct H̃ with {π∗,x,22 | x ∈ X} andH.
6: π̃∗1 ,V ← Solve MDP H̃.
7: return π̃∗1 .

where PrH̃,π̃∗1 (s0h′ |= ϕ1) is the probability of satisfying the given P1’s task ϕ1 in the Markov

chain induced from H̃ under the optimal policy π̃∗1 , and u1(s0,π
∗
1 ,π

∗
2 ,ϕ1) is the value of the

zero-sum game with complete information given P1’s task ϕ1.

Note that we have PrH̃,π̃∗1 (s0h′ |= ϕ1) = V(s0, [[h0]]x0,q0,x0). In words, the value of deceit is

the ratio between P1’s probability of satisfying the scLTL objective using the solution of the

dynamic hypergame and P1’s probability of satisfying the same objective when both players have

complete information. Based on the definition, P1 will only gain advantage with deception when

the value of deceit is greater than one.

5.2.4 Case study: Robot Motion Planning

In this section, we present a robot motion planning example to illustrate the proposed

deceptive planning method. This case study includes an inference function for P2 based on the

sliding-window change detection, introduced next.

5.2.4.1 Inference with Sliding-Window Change Detection

We introduce a class of inference algorithms based on change detection in Markov chain

(MC) [97]. Given P2’s finite hypothesis space X , P2 can construct a set of games {G(x) | x ∈ X}.

For each game G(x), it is assumed that there is a unique equilibrium ⟨π∗,x1 ,π∗,x2 ⟩, where

π
∗,x
i : PrefPaths→DAi is a mixed strategy for player i given the hypothesis x. This equilibrium

induces a probability measure Pr⟨π
∗,x
1 ,π∗,x2 ⟩ over histories in G(x). For simplicity in notation, we

denote Pr⟨π
∗,x
1 ,π∗,x2 ⟩ as Prx.

When P2’s current hypothesis is x, P2 can detect a change from x to some x′ ∈ X using a

sliding-window change detection algorithm based on the Cumulative SUM (CUSUM)

114

statistic [98]. First, we are given a data point in forms of history h = s0a0s1 . . .sn and a nominal

model x0. We denote the interval of a time window of size m+1 as [k,k+m], and the history

within this time window is skak . . .sk+mak+msk+m+1. Second, we denote the i-th observation of the

transitions within the time window as yi = (ak+i−1,sk+i) for 1≤ i≤ m+1. When i = 0, the 0-th

observation within the window is y0 = (sk). Intuitively, given a data and a nominal model x0, the

sliding-window change detection algorithm uses a subsequence of history over a time window

and detects if a change has occurred in the model that generates the data during this time window.

Specifically, for each hypothesis x ∈ X and a nominal model x0, the algorithm computes the

log-likelihood ratio, for 1≤ j ≤ m+1,

Rx
j =

j

∑
i=0

rx
i ,

where rx
i = ln Prx(yi)

Prx0(yi)
, and Prx(yi) (resp. Prx0(yi)) is the probability of observing the transition

given the probability measure Prx (resp. Prx0).

The change detection lies in the difference between the log-likelihood ratio and its current

minimum value. The CUSUM score is given by,

Zx
l = Rx

l − min
1≤ j≤l

Rx
j, for 1≤ l ≤ m+1.

Recursively, the CUSUM score is updated for each hypothesis x ∈ X as

Zx
l = max{0,Zx

l−1 + ln
Prx(yl)

Prx0(yl)
}, (5-4)

where Zx
0 = 0.

A change is detected at time t when the score of at least one model, say Zx
l , exceeds a

user-defined constant threshold c > 0. Formally, the time of change is given by

t = min{l | ∃x ∈ X , Zx
l ≥ c}.

115

Once a change is detected, the algorithm sets the nominal model to be the current predicted

model, disregards the history until the change, and keeps running the online change detection

given new observations from the change point onwards. In the case when multiple models

maintain similar CUSUM scores, we select one model based on some domain-specific heuristics

or at uniformly random.

Lemma 5-1. Given a sliding-window change detection inference η : X×PrefPaths→ X with

window size m+1 and a finite hypothesis space X, two histories h1,h2 are (η ,x)-equivalent if

they share the same suffix 3 of length m+1.

Proof. The proof is based on the property of the change detection and thus omitted.

5.2.4.2 Deceptive Planning with a Temporal Logic Objective

We consider two examples inspired by security games, referred to world1 (Fig. (5-4a)) and

world2 (Fig. (5-4b)). In both worlds, a robot (P1) is to visit several regions of interest (labeled

A,B,C and colored in red) according to a temporal ordering, and an observer (P2) can reallocate

traps in cells colored in blue. Both games are concurrent: When P1 selects an action to move, P2

simultaneously chooses an action to reallocate the traps. When P1 enters the cell where P2

allocates the trap to that cell, we say that P1 is trapped. The game terminates in two ways: a) P1 is

trapped; b) P1 completes its task.

Formally, we describe P1’s task by the formula as follows:

ϕ1 = (¬obsUA)∧ (¬(B∨obs)UC).

That is, the robot needs to visit A and C without reaching obstacles. Before visiting C, the robot

cannot visit B. The corresponding DFA is drawn in Fig. (5-5).

P1 can move in four compass directions, and P1’s dynamics is plotted in Fig. (5-4c). The

grid world is surrounded by a bouncing wall, i.e., if P1 hits the wall, then P1 gets bounced back to

P1’s previous cell. The orange cell in the grid world is a static obstacle, labeled by obs.

3 For a word w = σ1σ2 . . .σn, a suffix of w is a word v of the form σiσi+1 . . .σn, where 1≤ i≤ n.

116

(a) (b) (c)

Figure 5-4. (a): world1’s initial configuration for P1 and P2. (b): world2’s initial configuration for
P1 and P2. Cells colored in yellow are walls. Bulbs indicate initial P2’s predictions.
(c): Robot’s dynamics when action “up” is taken.

q0start

q1q2

q3q4⊤

obs∨B

A C

obs

A

B∨C

obs∨B

A

C

⊤

Figure 5-5. The task automaton with 5 states and 12 edges corresponds to ϕ1, where
Q = {qi | i = 0,1,2,3,4}.

P2 can reallocate the traps (i.e., dynamic obstacles) to a subset of cells colored in blue in

world1 and world2. P2 can only use ℓ traps with n possible trap locations. Thus, the number of

actions for P2 is
(n
ℓ

)
, i.e., choose ℓ out of n. Every time P2 resets the location of any trap, it must

wait at least k time steps to be able to reallocate any trap again. In the example of world1, we

select n = 4, ℓ= 1, and let k = 0; In the example of world2, we select n = 3, ℓ= 1, and let k to be

a variable.

In both examples: world1 and world2, the asymmetrical information is as follows:

• P1 knows the complete task ϕ1.

• P2 does not know the complete task ϕ1.

117

We refer to this situation as asymmetric information case. On the other side, if P2 knows P1’s

complete task, then we refer to that as symmetric information case. In the asymmetric information

case, P2 has a hypothesis space X = {¬obsUφ | φ ∈ {A,B,C}}.

Different behaviors under asymmetric and symmetric information cases in world1. We

compare P1’s task completion rates between asymmetric information case and symmetric

information case.

In the asymmetric information case, for each x ∈ X , P2 solves a Stackelberg/leader-follower

game and decides a trap configuration against the best response of P1 in game G(x). Let A2 be the

set of different configurations of traps. The strategy of P2 is obtained as follows:

π
∗,x,2
2 (s) = arg min

a2∈A2

max
π1

π1
Pr(hh′ |= x | s,a2),

∀s ∈ S,

where Prπ1(hh′ |= x | a2) is the probability of P1 satisfying the formula x given P2’s action (trap

configuration) a2. For instance, if x = ¬obsUB and robot is at the (2,4), then P2’s optimal action

is to allocate the trap to the blue cell right to robot, that is (3,4). For each hypothesis x ∈ X and

state s ∈ S, P2 solves the optimal trap allocation action a2 and also computes the best response of

P1 that achieves the maximum probability of satisfying x from the state s. The joint strategy

profiles for different hypotheses x ∈ X also enable P2 to infer the subgoal of P1: P2 observes the

behavior of P1 given the current trap location a2 and then infer, for which x, P1’s behavior

matches with the best response given x and a2 using the sliding-window change detection.

For the configuration of world1, we evaluate different window sizes and find

sliding-window size m+1 = 2 and user-defined threshold c = 0.12 achieve a good trade-off

between space complexity and accuracy in prediction in this example. In the symmetric

information case, P1 and P2 both have exact knowledge of task specification ϕ1, and P1 wants to

maximize the P1’s probability of finishing the task; P2 wants to minimize the P1’s probability of

118

finishing the task. We denote the Nash Equilibrium strategy profile by ⟨π∗1 ,π∗2 ⟩, where the Nash

Equilibrium strategy profile is obtained as follows:

⟨π∗1 ,π∗2 ⟩= arg min
π2∈Π2

max
π1∈Π1

⟨π1,π2⟩
Pr (hh′ |= ϕ1).

Table 5-3. The completion rates for P1 in asymmetric information case and symmetric
information case in world1.

Info P1 Policy P2 Policy Completion rate (P1)
Asymmetric π̃∗1 π

B,2
2 66.96%

Symmetric π∗1 π∗2 29.69%

In Table. 5-3, we list P1’s completion rates for its task specification: one for asymmetric

information case and one for symmetric information case. From Table. 5-3, it indicates that under

asymmetrical information, by following the deceptive strategy given P2 plays BSR strategy, P1

has a higher probability of satisfying the specification than that of the case by following the Nash

Equilibrium strategy profile. The value of deceit in world1 is VoD= 66.96%
29.69% = 2.26.

Note that in this case, P2 can only place traps near B and C but not A. We plot three key

steps during the simulation in Fig. (5-6). The solid lines denote the robot’s trajectories. In

Fig. (5-6) (a), P2 predicts that P1 is to reach B after observing that the robot goes up. The

prediction does not change until the robot reaches (1,4) in Fig. (5-6) (c). When the robot reaches

(2,4), P2 still predicts B (see Fig.5-6 (b)) and places the trap at (3,4) (see Fig.5-6 (c)). When the

robot reaches (1,4), P2 correctly predicts C. But it is too late, and P2 cannot prevent the robot

from reaching C. The deceptive strategy leverages this information asymmetry to lead P1 to

achieve a higher probability of finishing its task. We provide a short video 4 to demonstrate the

difference between P2’s behaviors in the cases with asymmetric information and symmetric

information, respectively.

Next, we investigate how delays in reallocating traps for P2 would affect the completion

rate of P1. However, in the world1 example, we observed in experiments that any delay on

4 https://www.dropbox.com/s/i98ka56gdhdvxgq/video_10_09_2021.mp4?dl=0

119

https://www.dropbox.com/s/i98ka56gdhdvxgq/video_10_09_2021.mp4?dl=0

(a) (b) (c)

Figure 5-6. Three key steps of deception in the simulation. (a) P2 predicts P1 is to reach B. (b) P2
reallocates the trap given P1’s position. (c) P2 predicts that P1 is to reach C but it is
too late for P2 to respond.

reallocation could easily lead P1 to complete its task. Based on this observation, we construct

another example world2, and evaluate the completion rates for every k steps of delay and

effectiveness of model mismatch in this example world2.

Reallocation every k steps of delay in world2. In this example, we assume that P2 is restricted

to only reallocate the trap after k steps since the last reallocation, where k is an integer. P1 is

aware of P2’s delay k and synthesizes the deceptive strategy. Fig. (5-7) shows the completion rate

of task (values of P1 at initial state (2,4) in Fig. (5-4b)) under different steps of delay up to k = 3.

The results indicate that with the increase of steps of delay, the probability of completing the task

increases, and P1 exploits P2’s delay and lack of information.

Detection of model mismatch in world2. We use experiments in the configuration world2 to

demonstrate the effectiveness of the detection mechanism, that is, to identify whether there is a

deviation from the predicted opponent model of P2. We set the significance level α = 0.05. If the

likelihood of observed action sequences is smaller than or equal to 0.05, we reject the null

hypothesis: the data is generated by our predicted model of P2.

We consider a case that P1 follows policy π̃∗1 , and P2 plays the policy predicted by P1 for

the first four steps. After the first four steps, we let P2 play a random policy πR
2 , i.e.,

120

Figure 5-7. The task completion rates of P1 given P2 with k-step delay in reallocating traps, for
k = 0,1,2,3.

πR
2 (a | s) =

1
|A(s)| , for all a ∈ A(s). The mismatch is detected at the 7-th step of the online

interaction, and P1 is alerted that P2 deviates from the predicted policy. We compute λ after each

step and plot it in Fig. (5-8), where we also plot the χ2. (The reason predicted λ = 0 is because

the predicted policy π
B,2
2 is deterministic.) From Fig. (5-8), we see that at the 7-th step of online

interaction, we have λ > χ2, so we reject the null hypothesis H0. The degree of freedom in the

Chi-square detector is the number of the state-action pairs.

Complexity. Our realization of the proposed framework in examples includes three major

components: a) Inference with sliding-window change detection, b) Equilibrium solving of

Stackelberg games, c) MDP planning for deceptive planning. The inference with sliding-window

change detection has an O(m) time complexity, where m+1 is the window size. It is noted that

P2’s BSR strategies are computed using a set of leader policies computed offline based on solving

a set of Stackelberg games, one for each hypothesis. Given P2’s BSR policy, we can reduce

solving P1’s optimal deceptive strategy problem into an MDP planning problem, which can be

121

Figure 5-8. The likelihood ratio λ for online interaction between P1 and P2.

solved in polynomial time in the size of the states and actions [99], where the state space is the

product of the states in the game, the set of inference-equivalent histories, the DFA states, and a

set of hypotheses. We solve the equilibrium of Stackelberg games and solve the MDP with the

value iteration algorithm. We run algorithms on a Windows 10 machine with AMD Ryzen 9

5900X CPU and 16 GB RAM. The computational time of equilibrium solving of Stackelberg

games are about 5 s, and the computational time of MDP planning is 140 s.

Finally, it is remarked that the deceptive planner can use different components given

different inference algorithms and solutions of P2’s BSR strategies. This analysis of complexity

may not generalize to other classes of hypergames.

122

CHAPTER 6
PLANNING WITH INCOMPLETE PREFERENCES OVER TEMPORAL GOALS

This chapter investigates the problem of planning with incomplete preferences over

temporal goals. We introduce a novel automata-theoretic approach to qualitative planning in

MDPs with incomplete preferences over temporal logic objectives. Our approach consists of a

language PrefScLTL to specify preferences over ω-regular reachability objectives, a procedure to

construct an automaton representation of the preference model defined by the PrefScLTL

formula, and a synthesis algorithm to construct a maximal preference satisfying strategy.

6.1 PrefScLTL: A Language to Specify Preferences over Temporal Objectives

In this section, we introduce a new language to express preferences over scLTL formulas.

Definition 32 (Preference formula). Let ϕ be an scLTL formula. A preference formula is defined

inductively as follows.

α := ϕ ▷ϕ | ϕ ≈ ϕ | ϕ ▷◁ ϕ | α ∧α.

Given two scLTL formulas ϕ1 and ϕ2, the formula ϕ1 ▷ϕ2 represents that satisfying ϕ1 is

strictly preferred to satisfying ϕ2. The formula ϕ1 ≈ ϕ2 represents that satisfying ϕ1 is indifferent

to satisfying ϕ2. The formula ϕ1 ▷◁ ϕ2 represents that satisfying ϕ1 is incomparable to satisfying

ϕ2. The formula α1∧α2 represents that both the preference formulas α1 and α2 should be

satisfied.

The formula ϕ1 ⊵ ϕ2 represents that satisfying ϕ1 is weakly preferred to satisfying ϕ2. The

operator ⊵ is a derived operator. Given a formula α that contains weak preference operator, a

preference formula α ′ containing only ▷,≈,▷◁,∧ can be constructed based on [100, Ch. 2]: If

ϕ1 ⊵ ϕ2 appears in α but ϕ2 ⊵ ϕ1 does not, then α ′ contains ϕ1 ▷ϕ2. If ϕ2 ⊵ ϕ1 appears in α but

ϕ1 ⊵ ϕ2 does not, then α ′ contains ϕ2 ▷ϕ1. If ϕ1 ⊵ ϕ2 and ϕ2 ⊵ ϕ1 appear in α , then α ′ contains

ϕ1 ≈ ϕ2. If neither ϕ1 ⊵ ϕ2 not ϕ2 ⊵ ϕ1 appears in α , then α ′ contains ϕ1 ▷◁ ϕ2.

The formulas ϕ1 ▷ϕ2, ϕ1 ⊵ ϕ2, ϕ1 ≈ ϕ2, and ϕ1 ▷◁ ϕ2 are called atomic preference

formulas. The formulas containing ∧-operator are called general preference formulas.

123

A preference formula is interpreted using the preference model they induce over the set Σω

(formalized in Definition 36. The preference model determines, for a pair w,w′ ∈ Σω of words,

whether w is preferred/indifferent/incomparable to w′.

Definition 33 (Preference Model). A preference model is a tuple P = ⟨U,⪰⟩, where U is a

countable set of outcomes and ⪰ is a reflexive and transitive binary relation, i.e., a partial order,

on U .

We recall that a binary relation ⪰ on U is reflexive if every element u ∈U is related to

itself, i.e., u⪰ u. It is transitive if u1 ⪰ u2 and u2 ⪰ u3 then u1 ⪰ u3 is true for any u1,u2,u3 ∈U .

When ⪰ is a partial order, u1 ⪰ u2 and u2 ⪰ u1 implies u1 ≈ u2. An antisymmetric partial order,

in which u1 ⪰ u2 and u2 ⪰ u1 implies u1 = u2, is called a preorder.

The preference model over Σω induced by a preference formula α is understood based on

the preference model induced by α over the set of scLTL formulas appearing in α . The following

definition describes how to construct the preference model from a preference formula.

Definition 34. The preference model induced by α over the set of scLTL formula appearing in ϕ

is the tuple

P = ⟨F,⊵⟩,

where

• F= {ϕ0,ϕ1, . . . ,ϕn} where ϕ1, . . . ,ϕn is the set of scLTL formula appearing in α and

ϕ0 =
∧

i=1...n
¬ϕi. ϕ0 is not included if ϕ0 =⊥;

• ⊵ is the transitive closure of the set {(ϕi,ϕ j) | 0 < i, j ≤ n : ϕi ⊵ ϕ j or ϕi ▷ϕ j or ϕi ≈

ϕ j appears in α}∪{(ϕi,ϕ0) | 0 < i, j ≤ n}∪{(ϕi,ϕi) | i = 0≤ i, j ≤ n}.

The set F containing ϕ0 is said to be the completion of the set of scLTL formulas

{ϕ1, . . . ,ϕn} appearing in α since it ensures that, for every word w ∈ Σω , there exists a formula

ϕi ∈ F, i = 0 . . .n, such that w |= α . It is also noted that, by construction, ⊵ is a partial order.

124

Remark 4. In Definition 34, we follow the common assumption [55] that satisfying some

outcome in F is strictly preferred to satisfying none of them, i.e., ϕi ▷ϕ0 for all i = 1 . . .n.

Combinative preferences. The model ⟨F,⊵⟩ is a combinative preference model, as opposed to

an exclusionary one. This is because we do not assert the exclusivity condition that the languages

of any two formulas ϕ1,ϕ2 in F have empty intersection. This allows us to represent a preference

such as (♢a∧♢b)⊵ ♢a, i.e., “Visiting A and B is preferred to visiting A,” where the less

preferred outcome must be satisfied first in order to satisfy the more preferred outcome. In

literature, it is common to study exclusionary preference models (see [54, 55] and the references

within) because of their simplicity [65]. However, we focus on planning with combinative

preferences since they are more expressive than the exclusionary ones [101]. In fact, every

exclusionary preference model can be transformed into a combinative one, but the opposite is not

true.

When a combinative preference model is interpreted over infinite plays, the agent needs a

way to compare the subsets of formulas in F satisfied by two plays. For instance, consider the

preference formula (♢a∧♢b)⊵ ♢a. Let ρ1,ρ2 be two plays. Suppose that ρ1 visits both A and

B, and ρ2 visits A only. Therefore, ρ1 |= ♢a∧♢b, whereas ρ2 |= ♢a. To determine the preference

between the two plays, the agent compares the set {♢a,♢b} with {♢a} to conclude that the ρ1 is

preferred over ρ2. However, suppose the given preference formula is ♢a ⊵ ♢b. Then, the two

plays would be indifferent since both satisfy the more preferred objective of visiting A. In this

case, the less preferred objective of visiting B would not influence the comparison of the sets. To

formalize this notion, we define the notion of most-preferred outcomes.

Given a non-empty subset X⊆ F, let MP(X)≜ {R ∈ X | ∄R′ ∈ X : R′ ▷R} denote the set of

most-preferred outcomes in X.

Definition 35. Given a preference model ⟨F,⊵⟩ and a word w ∈ Σω , the set of most-preferred

outcomes satisfied by w is given by MP(w)≜MP({ϕ ∈ F | w |= ϕ}).

By definition, there is no outcome included in MP(w) that is preferred to any other outcome

125

in MP(w). Thus, we have the following result.

Lemma 6-1. For any word w ∈ Plays(M), every pair of outcomes in MP(w) are incomparable to

each other.

Now, we formally define the interpretation of ⟨F,⊵⟩ in terms of the preference relation it

induces on Σω .

Definition 36 (Semantics). Given a preference formula ϕ , let ⟨Σω ,⪰⟩ be the preference model

induced by ϕ over Σω . Then, for any w1,w2 ∈ Σω , we have

• w1 ≻ w2, i.e., w1 is strictly preferred to w2, if and only if there exist a pair of outcomes

α ∈MP(w1) and α ′ ∈MP(w2) such that α ▷α ′, and there does not exist a pair of outcomes

α ∈MP(w1) and α ′ ∈MP(w2) such that α ′ ▷α .

• w1 ∼ w2, i.e., w1 is indifferent to w2, if and only if MP(w1) =MP(w2).

• w1 ∦ w2, , i.e., w1 is incomparable to w2, otherwise.

6.2 Preference Automaton

In this section, we introduce a novel computational model called a Deterministic

Finite-state Preference Automaton (DFPA), which encodes the preference model ⟨Σω ,⪰⟩ into an

automaton. We present a procedure to construct a Deterministic Finite-State Preference

Automaton (DFPA) given a preference model P = ⟨F,⊵⟩ and prove its correctness with respect to

the interpretation in Definition 36.

Definition 37. A deterministic finite-state preference automaton (DFPA) is a tuple,

B = ⟨Q,Σ,δ , ι ,G⟩,

where Q,Σ,δ , ι are the finite set of states, the alphabet, the deterministic transition function, and

an initial state, similar to these components in a DFA. The last component G = (X ,E) is called a

preference graph, where the set of nodes X ⊆ 2Q represents a partition of Q and E ⊆X ×X is a

set of directed edges.

126

Algorithm 6-1 Construction of preference graph

1: function PREFGRAPH(⟨F,⊵⟩,⟨Q,Σ,δ , ι⟩)
2: Initialize X = /0,E = /0.
3: Let Λ←{Maximal(⃗q) | q⃗ ∈ Q}.
4: X ← {{⃗q ∈ Q |Maximal(⃗q) = λ} | λ ∈ Λ} is the set of nodes of preference graph.
5: for all (X ,X ′) ∈ X ×X do
6: Let q⃗, q⃗′ be two arbitrary states in X ,X ′, respectively.
7: Initialize Cond1a← false and Cond1b← true.
8: for all (α,α ′) ∈Maximal(⃗q)×Maximal(⃗q′) do
9: if α ▷α ′ then

10: Cond1a← true.
11: end if
12: if α ′ ▷α then
13: Cond1b← false.
14: end if
15: end for
16: if Cond1a = true∧Cond1b = true then
17: Add (X ′,X) to the set of edges E.
18: end if
19: end for
20: return G = ⟨X ,E⟩
21: end function

Given a word w = σ0σ1 . . . ∈ Σω , the path induced by w in the DFPA is the sequence of

states q0q1 . . . ∈ Qω such that q0 = ι and for any integer k ≥ 0, we have qk+1 = δ (qk,σk). The

preference graph G defines a preference model over Q as follows: Each preference node X ∈ X

represents an equivalence class of states in Q such that any two states q,q′ ∈ X are indifferent to

one another. Each edge (X ,X ′) ∈ E represents a strict preference that any state in X ′ is strictly

preferred to any state in X and an absence of an edge between two nodes X ,X ′ ∈ X represents

that any state in X is incomparable to any state in X ′.

Next, we describe the construction of DFPA given a preference model P = ⟨F,⊵⟩ induced

by ϕ . The construction involves two steps, namely, the construction of the underlying graph of

DFPA and the construction of the preference graph.

Definition 38. Let Ai = ⟨Qi,Σ,δi, ιi,Fi⟩ be the complete DFA representing the languages of αi for

127

all i = 0 . . .n. The underlying graph of the DFPA representing P is the tuple,

⟨Q,Σ,δ , ι⟩

where Q =×n
i=0Qi is the set of states in DFPA. We represent each state in Q as a vector q⃗ and the

i-th component of q⃗, denoted as q⃗[i], is the state in Qi. Σ =℘(AP) is a set of symbols.

δ : Q×Σ→ Q is the transition function is defined as δ (⃗q,σ) = (δi(⃗q[i],σ))n
i=0 for any state q⃗ ∈ Q

and any symbol σ ∈ Σ; and the initial state is ι⃗ = (ι0, . . . , ιn) where the state ι⃗ [i] ∈ Qi is the initial

state of the DFA Ai for any integer i = 0 . . .n.

Notice that the underlying graph of the DFPA is identical to the underlying graph of the

union product of the DFAs [102] corresponding to the outcomes {ϕ0, . . . ,ϕn}. The DFPA replaces

the final states in the union product with a preference graph which can be used to determine the

preference relation between two arbitrary words by comparing the sets of final states visited by

their paths in the DFPA.

Algorithm 6-1 describes a procedure to construct the preference graph. Given the

preference model and the underlying graph of the DFPA, the lines 3-4 of Algorithm 6-1 construct

the set of nodes X by grouping together the states in Q that represent satisfaction of the same set

of most-preferred outcomes. These most-preferred outcomes for a state q⃗ are determined based on

the subset of its components q⃗[i], i = 1 . . .n, that are final states in the respective DFAs as follows:

Let

Outcomes(⃗q)≜{ϕi ∈ F | q⃗[i] ∈ Fi, i = 1 . . .n} ∪

{ϕ0 | ∀i ∈ {0 . . .n} : q⃗[i] /∈ Fi} (6-1)

denote the set of outcomes satisfied by any word in Σω with a good prefix whose last state is

q⃗ ∈ Q. Clearly, Outcomes(q⃗) = {ϕ0} if and only if the word has no prefix that satisfies any of the

outcomes in {ϕ1, . . . ,ϕn}. Then, the set of most-preferred outcomes for q⃗ is defined as

MP(⃗q)≜MP(Outcomes(⃗q)).

128

The lines 5-7 of Algorithm 6-1 define the edges of the preference graph. An edge from X ′

to X is added to E if the conditions Cond1a and Cond1b are both true at the end of the for-loop.

The variable Cond1a represents the condition (1a) from Definition 36 that there exists a pair of

most-preferred outcomes α ∈MP(⃗q) and α ′ ∈MP(⃗q′) satisfied by any state q⃗ ∈ X and q⃗′ ∈ X ′,

such that α ▷α ′. The variable Cond1b represents the (1b) from Definition 36. To ensure that

α ′ ̸▷ α holds for all pairs of most-preferred outcomes α ∈MP(⃗q) and α ′ ∈MP(⃗q′) satisfied by

any state q⃗ ∈ X and q⃗′ ∈ X ′, the variable Cond1b is initialized to true and, whenever a violation is

witnessed (lines 11), it is set to false.

Proposition 11. Let X be the set of nodes constructed by Algorithm 6-1. Then, every state q⃗ ∈ Q

belongs to a unique node in X , i.e., X partitions Q.

Proof. Consider any state q⃗. We will show that q⃗ must be contained in some node in X and it

cannot be contained in more than one node. To see that it must be contained in some node,

observe that, by construction on line 3, there must exist λ ∗ ∈ Λ such that MP(⃗q) = λ ∗. By

construction on line 4, each node in X corresponds to a unique λ ∈ Λ. Therefore, q⃗ must be

included in the node corresponding to λ ∗. Since the most-preferred set of any subset of F is

unique, the condition MP(⃗q) = λ holds for exactly one λ ∈ Λ, which is λ ∗. Therefore, q⃗ must be

included in a unique node X ∈ X .

We conclude this section by showing that the DFPA B = ⟨Q,Σ,δ , ι ,G = ⟨X ,E⟩⟩

constructed using Definition 38 and Algorithm 6-1 indeed encodes the preference model P . First,

we note that the set of most-preferred outcomes satisfied by the states in the path of any

preference graph word satisfies the following property.

Lemma 6-2. Given any word w = σ0σ1 . . . ∈ Σω , let q⃗0⃗q1 . . . ∈ Qω be the path induced by w in

the DFPA. Then, there exists a finite integer k ≥ 0 such that Outcomes(⃗qk) = Outcomes(w).

Moreover, for any integer j > k, we have Outcomes(⃗q j) = Outcomes(⃗qk).

Proof. Without loss of generality, let Outcomes(w) = {ϕ1, . . . ,ϕm}, 0 < m≤ n, be the subset of

outcomes satisfied by the word w. Then, for every integer i = 1 . . .m, there exists an integer ki ≥ 0

129

such that the prefix σ0 . . .σki is a good prefix for the scLTL formula ϕi. Choose k to be the largest

integer from the set {k1, . . . ,km}. Then, the prefix σ0 . . .σk is a good prefix for every outcome in

Outcomes(w) because every finite extension of a good prefix is also a good prefix. Since

δi(⃗qk[i],σ0 . . .σk) ∈ Fi for any good prefix σ0 . . .σk, we have Outcomes(⃗qk) = Outcomes(w).

Because any two states that have identical most-preferred sets are represented by the same

node in X , we have the following result.

Corollary 5. In Lemma 6-2, let k ≥ 0 be an integer such that Outcomes(⃗qk) = Outcomes(w).

Then, there exists a unique node X ∈ X such that q⃗ j, q⃗k ∈ X, for all j ≥ k.

Given a word w ∈ Σω , the node X ∈ X that satisfies Corollary 5 is called a terminal node

visited by w.

Theorem 6-1. Given two words w,w′ ∈ Σω , let q⃗0⃗q1 . . . ∈ Qω and q⃗′0⃗q′1 . . . ∈ Qω be the paths

induced by w,w′ in DFPA, respectively. Then, for any integer k ≥ 0 such that MP(⃗qk) =MP(w)

and MP(⃗q′k) =MP(w′), the following conditions hold:

1. An edge (X ′k,Xk) ∈ E if and only if w≻ w′.

2. Xk = X ′k if and only if w∼ w′.

3. Xk and X ′k are disconnected in G if and only if w ∦ w′.

where Xk,X ′k ∈ X are the nodes that contain q⃗k, q⃗′k, respectively.

Proof. (1). Let k ≥ 0 be an integer such that MP(⃗qk) =MP(w) and MP(⃗q′k) =MP(w′). From

Algorithm 6-1, we know that an edge (X ′k,Xk) ∈ E exists if and only if the following conditions

hold: (a) there exists α,α ′ ∈ F such that α ∈MP(⃗qk),α
′ ∈MP(⃗q′k) and α ▷α ′, and (b) for all

α,α ′ ∈ F such that α ∈MP(⃗qk),α
′ ∈MP(⃗q′k), we have α ′ ̸▷ α . Since MP(⃗qk) =MP(w) and

MP(⃗q′k) =MP(w′) is known, the conditions (a) and (b) reduce to the condition (1a) and (1b) from

Definition 34. Finally, the statement (1) follows by Corollary 5. The proofs of (2), (3) follow

similarly.

130

6.3 Solution Concepts

In preference-based planning, the agent is to choose its next action given a finite prefix

ν ∈ PrefPaths(M) in order to satisfy the given preference relation on a set of outcomes. A naı̈ve

approach to this problem is to follow the strategy to satisfy a most-preferred outcome from the set

of almost-surely achievable outcomes given ν . However, this is not sufficient, as illustrated by the

following example.

Example 6. Consider the toy MDP shown in Fig. (6-1). The exact probabilities are omitted

because we analyze the MDP qualitatively. The transitions are understood as follows: Given

action a at state s0, it is possible to reach both s5 and s1 with positive probabilities.

Let F1 = {s1,s5},F2 = {s2,s4} and F3 = {s3} be three sets of final states. Let preference

formula be ♢F2 ▷♢F1∧♢F3 ▷♢F1. Clearly, ♢F2 and ♢F3 are incomparable. Therefore, the play

ρ1 = s0sω
3 , which satisfies ♢F3, is strictly preferred to the play ρ2 = s0s5sω

1 , which satisfies ♢F1.

Whereas, ρ1 is incomparable to the play ρ3 = s0sω
4 because it satisfies ♢F2.

Consider the state s0 at which the agent is to choose its next action. From s0, the agent can

visit F1 almost surely by choosing a. It, however, does not have an almost sure winning strategy

to visit either F2 or F3, individually. But, by choosing b at s0, the agent almost surely visits either

F2 or F3 and achieves a strictly better outcome than F1.

The example highlights that the almost sure winning solution concept is not suitable for

preference-based planning because it reasons about exactly one outcome at a time. As a result, the

agent cannot reason about opportunities to achieve a better outcome that may become available

due to stochasticity in the environment.

s5 s0 s4

s1 s2 s3

a b
b,c

c
a

a

Figure 6-1. Toy example to illustrate the limitation of almost-sure winning solution concept for
preference-based planning. The states with no outgoing transitions are sink states (the
self-loops are omitted for clarity).

131

In the sequel, we introduce two new solution concepts for probabilistic planning under

incomplete preferences interpreted over infinite plays. Our solution concepts are based upon the

notion of an improvement that generalizes the idea of improving flip [103] which is defined for

propositional preferences. An improving flip compares two outcomes representable as

propositional logic formulas to determine which is more preferred. Analogously, an improvement

compares two prefixes of a play to determine which one can yield a more preferred outcome with

probability one.

Given a prefix ν , let Outcomes(ν) = {ϕ ∈ F | ∃π ∈Π,∀ρ ∈ Cone(M,ν ,π) : ρ |= ϕ} be the

set of outcomes, each of which can be achieved almost-surely under some strategy. Note that

different outcomes may require different policies to achieve them.

Definition 39. Given a play ρ ∈ Plays(M) and two of its prefixes ν ,ν ′ ∈ Pref(ρ) such that

|ν ′|> |ν |, ν ′ is said to be an improvement of ν if there exists a pair of outcomes

R ∈MP(Outcomes(ν)) and R′ ∈MP(Outcomes(ν ′)) such that R′ ▷R. And, ν ′ is said to be a

weakening of ν if there exists a pair of outcomes R ∈MP(Outcomes(ν)) and

R′ ∈MP(Outcomes(ν ′)) such that R▷R′.

Given a prefix s0s1 . . .sk ∈ PrefPaths(M), the transition from sk−1 to sk is said to be an

improving transition if the prefix s0s1 . . .sk−1sk is an improvement over s0s1 . . .sk−1. A play that

contains an improving transition is called an improving play. It is noted that a prefix ν ′ can

simultaneously be an improvement and a weakening of a prefix ν .

Next, we define the two solution concepts that, while avoiding any weakening, induce

improvements either with positive probability or with probability one.

Definition 40 (SPI/SASI Strategy). Given a prefix ν = s0s1 . . .sk ∈ PrefPaths(M), a strategy

π : S+→ 2A is said to be safe and positively (resp., safe and almost-surely) improving for ν if the

following conditions hold:

1. (Safety) For all ρ ∈ Cone(M,ν ,π), the play νρ satisfies that s0s1 . . .s j is not a weakening of

s0s1 . . .sk for any integer j > k.

132

2. (Improvement) There exists (resp., for any) ρ ∈ Cone(M,ν ,π), the play νρ satisfies the

condition that there exists an integer j > k such that s0s1 . . .s j is an improvement over

s0s1 . . .sk.

We now state our problem statement.

Problem 7. Given an MDP M and a preference model ⟨F,⊵⟩, design an algorithm to synthesize

an SPI and a SASI strategy.

6.4 Synthesis of Opportunistic Preference Satisfying Strategies

In this section, we show how to synthesize the positive and almost-surely preference

satisfying strategies in MDP given the DFPA corresponding to a preference formula ϕ . We begin

by constructing a product of an MDP and a DFPA that allows us to reason simultaneously about

the stochastic environment and the preference model.

Definition 41. Given an MDP M = ⟨S,A,T,AP,L⟩ and a DFPA B = ⟨Q,Σ,δ , ι ,G = (X ,E)⟩, the

product of the MDP and DFPA is the tuple,

M≜ ⟨V,A,∆,G ≜ ⟨X̃ ,E⟩⟩,

where V := S×Q is the finite set of states. A is the same set of actions as M. The transition

function ∆ : V ×A→D(V) is defined as follows: for any states (s, q⃗),(s′, q⃗′) ∈V and any action

a ∈ A, ∆((s′, q⃗′) | (s, q⃗),a) = P(s′ | s,a) if q⃗′ ∈ δ (⃗q,L(s′)) and 0 otherwise. The component

G = (X̃ ,E) is a graph where X̃ ≜ {S×X | X ∈ X} is the set of nodes and E is a set of edges such

that, for any X̃i = S×Xi and X̃ j = S×X j, (X̃i, X̃ j) ∈ E if and only if (Xi,X j) ∈ E.

A path in the product MDP is an infinite sequence of states ρ = v0v1 . . . ∈V ω such that

there exists an action a ∈ A such that ∆(vi+1 | vi,a)> 0 holds for all i≥ 0. Letting vi = (si, q⃗i) for

all i≥ 0, we define the projection of a path ρ ∈V ω onto the DFPA B as the path

ρ = ρ ⇂B≜ q⃗0⃗q1 . . . ∈ Qω in B. The projection maps a path in the product MDP to the

corresponding path in the DFPA. Given a path ρ ∈V ω , we denote the set of outcomes satisfied by

133

ρ by Outcomes(ρ). The following result, which is a consequence of [104, Prop. 1], states that an

outcome α ∈ F is satisfied by ρ if and only if its projection ρ ⇂B satisfies ϕ .

Proposition 12. For any path ρ inM, Outcomes(ρ) = Outcomes(ρ ⇂B) and

MP(ρ) =MP(ρ ⇂B).

Due to Proposition 12, the preference between two paths in the product MDP can be

determined by comparing their projections onto the DFPA and using Theorem 6-1. But recall

that, Problem 7 asks us to design a positive (resp., almost-sure) preference satisfying strategy that

achieves no worse outcome than that possible by any other strategy with positive probability

(probability one).

Our approach to synthesize SPI and SASI strategies distinguishes between opportunistic

states, i.e., the states from which an improvement could be made, and non-opportunistic states.

We now introduce a new model called an improvement MDP to synthesize the SPI and SASI

strategies.

To facilitate the definition, we slightly abuse the notation and let

MP((s, q⃗))≜MP({ϕ ∈ F | ϕ ∈ Outcomes(⃗q)}) be the set of outcomes almost surely achievable

from state v inM.

Definition 42 (Improvement MDP). Given a product MDPM, an improvement MDP is the tuple,

M̃= ⟨Ṽ ,A, ∆̃,v0, F̃⟩,

where Ṽ =V ×{0,1} is the set of states, A is the same set of actions asM, ṽ0 = (v0,0) is the

initial state, and F = {(v,1) | v ∈V} is a set of final states that can only be reached by making an

improvement. The transition function ∆ : Ṽ ×A→D(Ṽ) is defined as follows: For any states

ṽ = (v,m), ṽ′ = (v′,m′) ∈ Ṽ such that v ∈ X̃ and v′ ∈ X̃ ′ and for any action a ∈ A, ∆(ṽ,a, ṽ′)> 0

holds if and only if the following conditions hold: T (v,a,v′)> 0 and either (X̃ , X̃ ′) ∈ E and

m′ = 1 holds or X̃ = X̃ ′ and m′ = 0 holds.

134

Every play ρ = v0v1 . . . ∈ Plays(M) induces a play ρ = ṽ0ṽ1 . . . in M̃ such that for all

i = 0,1, . . ., ṽi = (vi,mi) where mi ∈ {0,1} represents a memory element such that mi = 1 if and

only if the transition from vi−1 to vi is improving. The following proposition highlights important

features of the improvement MDP. Before that, we note the following fact to prove

Proposition 13.

Lemma 6-3. For every prefix ν = v0v1 . . .vk ∈ PrefPaths(M), it holds that

Outcomes(ν) = Outcomes(vk) and thus MP(Outcomes(ν)) =MP(Outcomes(vk)).

The proof follows from the fact that memoryless strategies are sufficient to ensure the

satisfaction of reachability objectives in MDPs [20]. In other words, if an outcome is almost

surely achievable given a prefix ν = v0v1 . . .vk, then it is almost surely achievable given vk.

For convenience, we write MP(v) =MP(Outcomes(v)) to denote the set of most preferred

outcomes satisfiable/achievable with some strategy from a state v ∈V .

Proposition 13. For any play ρ = ṽ0ṽ1 . . . ∈ Plays(M̃) such that ṽi = (vi,mi) for all i = 0,1 . . .,

the following statements hold.

1. (Safety). For every prefix ṽ0ṽ1 . . . ṽ j ∈ PrefPaths(ρ), v0v1 . . .v j is not a weakening of

v0v1 . . .vi for any 0≤ i < j.

2. (Improvement). For every integer k > 0 such that vk ∈ F , the prefix v0v1 . . .vk is an

improvement of v0v1 . . .vk−1.

Proof (Sketch). For statement (1) to hold, it must be the case that R ̸ ▷R′ holds for all pairs of

outcomes R ∈MP(si) and R′ ∈MP(s j). This is true because of Lma. 6-3 and the fact that every

transition from ṽi to ṽi+1, j < i≤ k, that violates the condition is disabled by Def. 42.

To see why statement (2) holds, consider an integer k > 0 such that ṽk ∈ F . Then, by

construction, there exists a pair R ∈MP(vk−1) and R′ ∈MP(vk) such that R′ ▷R.

In words, the improvement MDP guarantees by construction that no play in Plays(M̃)

violates the safety condition of Def. 40. Moreover, it helps identify the opportunistic states as the

ones that have an outgoing transition into F̃ .

135

Corollary 6. A play ρ ∈ Plays(M̃) is improving if and only if Occ(ρ)∩F̃ ≠ /0.

As a result, the problem of determining whether an improvement is possible from a state

ṽ ∈ Ṽ reduces to checking whether a state in F̃ can be reached from ṽ with a positive probability

(in case of SPI strategy) or with probability one (in case of SASI strategy).

Theorem 6-2. The following statements hold:

1. Any positive winning strategy πPWin(F̃) in M̃ is an SPI strategy.

2. Any almost-sure winning strategy πASWin(F̃) in M̃ is an SASI strategy.

The proof follows from the fact that there exists a (resp., every) play ρ ∈ Cone(M̃, ṽ0,π)

induced by any positive (resp., almost-sure) winning strategy π visits F̃ with positive probability

(resp., probability one) [105]. Therefore, Thm. 6-2 establishes that by following πPWin(F̃) (resp.,

πASWin(F̃)), the agent is ensured to make an improvement with a positive probability (resp., with

probability one). It is noted that an SPI (resp., SASI) strategy exists if and only if the

corresponding positive (resp., almost-sure) winning strategy exists in M̃.

The SPI and SASI strategies from Thm. 6-2 guarantee that at least one improvement will

occur with positive probability or with probability one. Next, we present Alg. 6-2, using which

we can determine the maximum number of improvements that can almost surely be made from a

given state in M̃. The algorithm to determine the maximum number of improvements possible

from a given state in M̃ with a positive probability and its properties are similar to Alg. 6-2.

First, note the following properties of the improvement MDP which follow from the

construction of MDP.

Proposition 14. Consider two states (v,0),(v,1) ∈ Ṽ , it holds that for any action a ∈ A, we have

Supp(∆̃((v,0),a)) = Supp(∆̃((v,1),a)).

The proof is straightforward because given (v,0),(v,1), for any action a ∈ A, if a transition

from v to v′ given a is improving, then ∆̃((v,0),a,(v′,1))> 0 and ∆̃((v,1),a,(v′,1))> 0. Else,

∆̃((v,0),a,(v′,0))> 0 and ∆̃((v,1),a,(v′,0))> 0.

136

Algorithm 6-2 Level set for constructing safe and almost-surely improving strategy.

Inputs: Improvement MDP, M̃.
Outputs: Level set,W .

1: i← 0
2: Ri←F
3: while Ri is not empty do
4: Wi+1← ASWin(Ri)
5: Ri+1←{(v,1) ∈ F | (v,0) ∈Wi+1}
6: if i = 0 then
7: Add Ṽ \Wi+1 to level 0 inW .
8: end if
9: Add Wi+1 to level i+1 inW .

10: i← i+1
11: end while
12: returnW

Corollary 7. The final states F̃ can be visited again from a state (v,1) ∈ Ṽ with a positive

probability (resp., with probability one) if and only if F̃ can be visited from (v,0) with a positive

probability (resp., with probability one).

Proof. Let π be a positive winning strategy to visit F̃ from (v,0). Let Y = Supp(∆̃((v,0),a)) for

some a ∈ π((v,0)). By the property of a positive winning strategy, a state in F̃ is reached with

positive probability by following π from any state in Y . By Proposition 14,

Y = Supp(∆̃((v,1),a)). Therefore, by choosing a at (v,1) and then following π , a state in F̃ is

visited with positive probability from (v,1). The proof for almost-sure winning is similar.

Intuitively, Alg. 6-2 constructs a setW of level sets such that from any state that appears at

k-th level inW , at least k visits to F̃ are guaranteed and, thereby, at least k improvements can be

made.

For this purpose, it iteratively computes the almost-sure winning region to visit the states in

Ri ⊆ F̃ , from which F̃ can be visited at least i times. We denote by Wi the i-th level set. The

level-0 ofW contains the states Ṽ \ASWin(F̃) from which F̃ cannot be visited again with

probability one. That is, 0-visits to F̃ are guaranteed from any state in level-0 ofW . Every state

in level-1 ofW is almost surely winning to visit F̃ . Hence, at least one visit to F̃ is guaranteed.

137

Now, consider the subset R1 = {(v,1) ∈ F | (v,0) ∈W1} of final states F̃ . By Corollary 7, because

(v,0) ∈W1 = ASWin(F̃), there exists a strategy from every state in R1 to visit F̃ with probability

one. Therefore, from any state (v,0) ∈W2 = ASWin(R1) at least two improvements are

guaranteed—first, when visiting (v′,1) ∈ R1 and, second, when visiting R0 = F̃ by following the

almost-sure winning strategy at (v′,1). Repeating a similar argument, it follows that at least

k-visits are guaranteed almost surely from states at k-th level inW .

The largest integer k ≥ 0 such that the state (v,0) ∈ Ṽ appears at k-th level ofW is called

the rank of the states (v,0) and (v,1), denoted as rank(v,0) = rank(v,1) = k.

Proposition 15. From any state ṽ = (v,m) ∈ Ṽ , m ∈ {0,1}, there exists a strategy to visit F̃ at

least rank(ṽ)-many times.

Proof. We construct the strategy that achieves rank(ṽ) improvements: First, if rank(ṽ) = k, then

by construction it is in ASWin(Rk−1). Following the almost-sure winning strategy a state in Rk−1

can be reached with probability one and thus the first improvement is made. Upon reaching a

state, say (v′,1), in Rk−1, we have (v′,0) ∈Wk−1. Because Wk−1 = ASWin(Rk−2), an almost-sure

winning strategy exists to reach Rk−2 and hence the second improvement. Repeating similar

steps, eventually, R0 will be reached after the k-th improvement.

Corollary 8. From any state ṽ = (v,m) ∈ Ṽ at most rank(ṽ)-many visits to F̃ are almost surely

guaranteed.

Proof (Sketch). By contradiction. Suppose that rank(ṽ) = k but k+1 visits to F̃ are possible from

ṽ. Since k+1 visits are possible from ṽ, by definition ofW , it must be the case that ṽ ∈Wk+1. If ṽ

is at (k+1)-th level inW then its rank must be at least k+1—a contradiction.

The proof of Proposition 15 defines the strategy that allows the agent to make rank(v)

improvements from any state v.

Complexity. Alg. 6-2 runs in polynomial time with respect to the size of M̃ since the while

loop can run no more than |Ṽ | times and the complexity of ASWin is quadratic in the size of M̃

[78].

138

6.5 Example: Robot Motion Planning in Stochastic Gridworld

We illustrate our approach using a motion planning problem for a robot in a 5×5 gridworld

as shown in Fig. (6-2). The gridworld environment consists of seven regions:

{A : (0,0),B : (2,0),C : (4,0),D : (2,4),E : (4,4),F : (1,2)} from which the robot must pick up

an item. There is a charging station at cell (4,2). Each cell is denoted using the convention (row,

col). The robot can choose among four actions N, S, E, W to deterministically move north,

east, south, and west by one cell. The actions E, W are disabled in the cells (4,2) and (2,2). The

cells (1,1),(3,1),(1,3),(3,3) are slippery; that is, whenever the robot moves into any of these

cells, say (1,1), it may non-deterministically end up in either the same cell (1,1), or the cell north

to it (2,1), or south to it (0,1). In any cell, if applying an action results in a cell that is outside the

gridworld or contains an obstacle, the robot returns to the same cell. The robot has a limited

battery of 8 units, which it may recharge by visiting the charging station. The robot spends 1 unit

to execute each action.

Initially, only the items at A,B, and C are available for pickup. That is, if the robot visits the

charging station or regions D,E,F , then neither its battery will be recharged nor will it be able to

pick up items D,E,F . When the robot picks up an item at A or B, the charging station and the

items at D,E become available. When the robot picks up an item at C, the charging station and

the items at E,F become available. The following preference about picking up the items is given

to the robot:

(♢D▷♢A)∧ (♢E ▷♢A)∧ (♢D▷♢B)∧ (♢E ▷♢B)∧ (♢E ▷♢C)∧ (♢F ▷♢C).

By default, picking up any item is preferred to not picking up any item.

SASI SPI
Rank-1 768 926
Rank-2 98 167

Table 6-1. Number of states from which the robot has a safe and positively improving and safe
and almost-surely improving strategies to make at least 1 or at least 2 improvements.

139

Figure 6-2. A gridworld example in which the black arrows with no-entry symbol denote the
disabled actions from that state and green arrows show the random outcomes on
entering the cell.

Note that the preference model given to the robot is incomplete as well as combinative. It is

incomplete because picking up items A,B,C are mutually incomparable outcomes. Similarly,

picking up items D,E,F are mutually incomparable. It is combinative because, for instance, any

play in which robot picks up an item from D or E is considered preferred to a play in which robot

only picks an item from A or B, even though to pick an item from D or E an item from A or B

must be picked first.

We implemented the example in Python 3.9 on a Windows 10 machine with a core i7,

2.80GHz CPU, and 32GB memory. The SPI and SASI strategies are computed using set-based

positive and almost-sure winning algorithms implemented in

https://github.com/abhibp1993/ggsolver/. We discuss a few noteworthy observations

next. The improvement MDP for this case has 3600 states and 18496 transitions, whereas the

improvement MDP has 7200 states and 35524 transitions. The time required for constructing the

improvement MDP is 9.47 seconds which includes time required to solve for almost-sure winning

regions to visit A-F independently. Whereas, the construction of SASI and SPI strategies took

6.54 seconds and 7.23 seconds, respectively.

Consider the initial state s0 = (2,2,8,(1,1,1,0,0,0,0)) in which the robot is at cell (2,2)

with 8 units of battery. The fourth component of the state denotes which items are available for

pickup, with the last element of the tuple reserved for the availability of the charging station. In

140

https://github.com/abhibp1993/ggsolver/

this state, the robot has no almost-sure winning strategy to visit any of A,B, or C. This is because

to visit, say, A; the robot must visit the slippery cell (1,1). But whenever (1,1) is visited, the

robot may reach (2,1) with a positive probability. Hence, MP(Outcomes(s0)) = /0.

When we use the SASI concept, the rank of the state (s0,1) is 2, indicating that two

improvements are almost surely guaranteed. This is understood by observing the SASI strategy

which chooses action N at (s0,0) to reach s1 = (3,2,7,(1,1,1,0,0,0,0)). At (s1,0) the strategy

selects W and visits either B or C with probability one. Since a pickup from B and C are

incomparable, both actions N and S are deemed valid under SASI strategy at

(3,1,6,(1,1,1,0,0,0,0)). On visiting either B or C, the SASI strategy follows the almost-sure

winning strategy to visit either D or E to make a second improvement. Since visiting cell (3,3)

may result in returning back to cell (3,2) with a positive probability, the robot can recharge itself

until a successful visit to E or D is made.

The SASI strategy at (s0,0) does not select S because a second improvement cannot be

guaranteed with probability one after visiting A since the robot may remain at the cell (0,1) until

its battery runs out. However, we observe that the SPI strategy at (s0,0) allows the selection of

both actions N, S at (s0,0) since in both cases, two improvements are possible with positive

probability.

We conclude with Table. 6-1 that shows the number of states from which the robot has an

SPI and SASI strategies to make at least 1 or 2 improvements, since the maximum number of

improvements possible under given preference model is 2. We note that the states from which a

SASI strategy exists are a subset of states from which an SPI strategy exists.

141

CHAPTER 7
CONCLUSION AND PERSPECTIVES

In this dissertation we have studied the synthesis of winning strategies in games on graphs

with two kinds of incomplete information: exteroceptive and interoceptive. We studied three

fundamental classes of two-player games on graphs with one-sided exteroceptive incomplete

information and the synthesis of preference satisfying strategies in single-player stochastic games

with interoceptive incomplete information.

7.1 Achievements and Perspectives

The key achievements of this dissertation are as follows.

Hypergame theory for games on graphs. This dissertation lays the foundations for studying

hypergame theory for games on graphs. We define the categorization of hypergames in two ways

based on whether the perceptions of players remain static or evolve during the interaction. We

introduce a static hypergame on graph to model an interaction where perceptions of players

remain constant throughout the interaction. We study static hypergames on graphs under two

settings. First, when P2’s perception remains constant because of its ignorance or its incapability

to update its perception based on observations. In this setting, we show that P1 can synthesize

opportunistic strategies, which capitalize on P2’s misperception to enforce a win from an

otherwise losing state (i.e., a losing state in the game with perfect and complete information).

Second, when P2 has the capability of updating its perception, but P1 intentionally prevents it by

only selecting actions that are subjectively rationalizable for P2. We formalize this idea by

introducing the solution concepts of stealthy deceptive sure winning and stealthy deceptive

almost-sure winning. We introduce a dynamic hypergame to model situations where P2’s

perception could evolve during the game. A dynamic hypergame captures the evolution of P2’s

subjectively rationalizable strategies with respect to changes in its perception. For these models,

we introduce the solution concepts of deceptive sure winning and deceptive almost-sure winning.

Both these concepts are not stealthy since the model permits the perceptions of players to evolve.

For the three fundamental classes of misperceptions possible in games on graphs, this dissertation

142

investigates the important properties of hypergame on graphs and presents the algorithms to

synthesize winning strategies for P1 and P2 under the introduced solution concepts.

From a high-level perspective, the hypergame-theoretic approach used to studying games on

graphs with incomplete information enables us to model and analyze the rational behavior of the

players who may be unaware of their misperception and may have an ability to update their

perceptions by observing the history of their interaction. This not only pushes the boundary of the

state-of-the-art in sequential decision-making in infinite-duration interaction but also in

significantly advances the field of games with incomplete information. Most importantly, we have

employed a reductionist approach wherever possible: Except for the class of action

misperception, we successfully reduce the synthesis problem for a game on graph with

incomplete information to that of synthesizing a winning strategy for a game on graph with

perfect and complete information. In static hypergames, we observed that the reduction only adds

a polynomial-time overhead. Thus, overall, the synthesis procedure completes within

polynomial-time. This observation is particularly important because the conventional Bayesian

games approach would have first transformed the game with incomplete information to that with

imperfect information. And, most algorithms games on graphs with imperfect information require

at least exponential-time to synthesize winning strategies.

Automata-theoretic approach to preference-based planning. This dissertation introduces an

automata-theoretic approach to synthesizing strategy given incomplete preferences over temporal

goals. Following a declarative paradigm, we define a language to specify a preference over a set

of scLTL specifications, a procedure to translate the specification into a computational model, i.e.,

a newly introduced preference automaton, and design a procedure to use the preference

automaton to synthesize a preference satisfying strategy in a stochastic environment under two

solution concepts: safe and positively improving, and safe and almost-surely improving.

Our solution makes a fundamental contribution to addressing the problem of sequential

decision-making under combinative, incomplete preferences, which may require the agent to

143

choose between incomparable outcomes. This is mainly because the classical approaches to

decision theory that rely upon dominance principle fail in this situation.

Computation tools. Finally, all the algorithms introduced in this dissertation were implemented

in a unified framework for solving games on graphs available at www.akulkarni.me/software.

7.2 Future Work

The approaches presented in this thesis open up a set of directions for future work.

Hypergames on graphs. Our development of hypergames is still in its early stages. We enlist

three directions for potential investigation. First, we only consider up to level-2 hypergames in

this work. A level-2 hypergame can model situations where at least one player knows that its

opponent misperceives certain component of the game. But the opponent does not know that the

player is aware of this fact. However, average humans are known to reason upto six levels (think

of yourself playing a card game like Bridge or not-at-home), whereas some advanced poker or

chess players can reason upto eight levels. In this regard, for the autonomous agents to interact

effectively with humans, they should at least be able to reason at eight levels, if not more.

Second, the solution concepts introduced in this work are based on the concept of subjective

rationalizability in normal-form hypergames. As discussed in the introduction, there are several

solution concepts for hypergames that provide insights into rational behavior of agents under

incomplete information. For example, the Fraser-Hipel equilibrium investigates the behavior of

agents when a subset of them can impose “sanctions” on a player who might unilaterally deviate

from an equilibrium point. At present, it is unclear whether these solution concepts are related to

any of the known solution concepts for games on graphs. Investigating these connections could

lead to deeper insights into sequential decision-making under incomplete information, especially

in multi-agent settings.

Lastly, the algorithms presented in this dissertation were designed with the aim of being

intuitive and easy to prove their correctness. Hence, there may exist more efficient algorithms to

144

www.akulkarni.me/software

solve the synthesis problem for these classes. It would be worthwhile to investigate and establish

the lower-bound on the complexity of solving these class of problems.

Planning with incomplete preferences. We propose two future directions. First, it would be

useful to investigate various ways to define semantics of the preference language. It is non-trivial

to define a “good” way to interpret a preference language when incompleteness is permitted. To

compare two outcomes (i.e., infinite paths), one must compare the sets of temporal logic formulas

satisfied by those outcomes. There are numerous ways to define this comparison. It is also clear to

us that no one way is the correct way! Instead, the usefulness of semantics is application driven.

Second, the present work considers single-player stochastic games on graphs with

incomplete preferences. It would be interesting to investigate the synthesis problem for two or

more player games on graphs where each player plays to maximally satisfy its preference

relation. Such games are of great interest to domains such as social choice theory, economics, and

database systems apart from game theory.

145

LIST OF REFERENCES

[1] Z. Aslanyan, F. Nielson, and D. Parker, “Quantitative verification and synthesis of
attack-defence scenarios,” in 2016 IEEE 29th Computer Security Foundations Symposium
(CSF), pp. 105–119, IEEE, 2016.

[2] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,” in Proceedings
15th IEEE Computer Security Foundations Workshop. CSFW-15, pp. 49–63, IEEE, 2002.

[3] R. R. Hansen, P. G. Jensen, K. G. Larsen, A. Legay, and D. B. Poulsen, “Quantitative
evaluation of attack defense trees using stochastic timed automata,” in International
Workshop on Graphical Models for Security, pp. 75–90, Springer, 2017.

[4] A. N. Kulkarni, J. Fu, H. Luo, C. A. Kamhoua, and N. O. Leslie, “Decoy allocation games
on graphs with temporal logic objectives,” in International Conference on Decision and
Game Theory for Security, pp. 168–187, Springer, 2020.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion
planning for dynamic robots,” Automatica, vol. 45, no. 2, pp. 343–352, 2009.

[6] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive mission and
motion planning,” IEEE Transactions on Robotics, vol. 25, pp. 1370–1381, 2009.

[7] P. J. Ramadge and W. M. Wonham, “The control of discrete event systems,” Proceedings of
the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[8] A. Puri, “Theory of hybrid systems and discrete event systems,” 1996.

[9] L. De Alfaro, T. A. Henzinger, and O. Kupferman, “Concurrent reachability games,”
Theoretical Computer Science, vol. 386, no. 3, pp. 188–217, 2007.

[10] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Formal Methods in
System Design, vol. 19, no. 3, pp. 291–314, 2001.

[11] J. C. Harsanyi, “Games with incomplete information played by “bayesian” players, i–iii
part i. the basic model,” Management science, vol. 14, no. 3, pp. 159–182, 1967.

[12] J. H. Reif, “The complexity of two-player games of incomplete information,” J. Comput.
Syst. Sci., vol. 29, pp. 274–301, 1984.

[13] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially
observable stochastic domains,” Artif. Intell., vol. 101, pp. 99–134, 1998.

[14] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dynamic programming for partially
observable stochastic games,” in AAAI Conference on Artificial Intelligence, 2004.

[15] J. D. Levin, “Dynamic games with incomplete information,” 2002.

[16] N. Bertrand, B. Genest, and H. Gimbert, “Qualitative determinacy and decidability of
stochastic games with signals,” 2009 24th Annual IEEE Symposium on Logic In Computer
Science, pp. 319–328, 2009.

146

[17] D. A. Martin, “Borel determinacy,” Annals of Mathematics, vol. 102, no. 2, pp. 363–371,
1975.

[18] D. A. Martin, “The determinacy of blackwell games,” The Journal of Symbolic Logic,
vol. 63, no. 4, pp. 1565–1581, 1998.

[19] L. De Alfaro and T. A. Henzinger, “Concurrent omega-regular games,” in Proceedings
Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332),
pp. 141–154, IEEE, 2000.

[20] L. de Alfaro and R. Majumdar, “Quantitative solution of omega-regular games,” in
Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pp. 675–683, 2001.

[21] W. Zielonka, “Infinite games on finitely coloured graphs with applications to automata on
infinite trees,” Theoretical Computer Science, vol. 200, no. 1-2, pp. 135–183, 1998.

[22] J. H. Reif, “Universal games of incomplete information,” in Proceedings of the eleventh
annual ACM symposium on theory of computing, pp. 288–308, 1979.

[23] K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger, “Randomness for free,” in
Mathematical Foundations of Computer Science 2010: 35th International Symposium,
MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings 35, pp. 246–257,
Springer, 2010.

[24] K. Chatterjee, L. Doyen, S. Nain, and M. Y. Vardi, “The complexity of partial-observation
stochastic parity games with finite-memory strategies,” in International Conference on
Foundations of Software Science and Computation Structures, pp. 242–257, Springer,
2014.

[25] S. Nain and M. Y. Vardi, “Solving partial-information stochastic parity games,” in 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 341–348, IEEE,
2013.

[26] V. Gripon and O. Serre, “Qualitative concurrent stochastic games with imperfect
information,” in International Colloquium on Automata, Languages, and Programming,
pp. 200–211, Springer, 2009.

[27] P. G. Bennett, “Toward a theory of hypergames,” Omega, vol. 5, no. 6, pp. 749–751, 1977.

[28] J. C. Harsanyi, “Games with incomplete information played by “bayesian” players, i–iii
part i. the basic model,” Management Science, vol. 14, no. 3, pp. 159–182, 1967.

[29] J. F. Mertens and S. Zamir, “Formulation of bayesian analysis for games with incomplete
information,” International journal of game theory, vol. 14, pp. 1–29, 1985.

[30] R. J. Aumann, M. Maschler, and R. E. Stearns, Repeated games with incomplete
information. MIT press, 1995.

147

[31] J. C. Harsanyi, “Games with incomplete information played by “bayesian” players part ii.
bayesian equilibrium points,” Management Science, vol. 14, no. 5, pp. 320–334, 1968.

[32] G. Bonanno, “Agm-consistency and perfect bayesian equilibrium. part i: definition and
properties,” International Journal of Game Theory, vol. 42, pp. 567–592, 2013.

[33] M. Wang, K. W. Hipel, and N. M. Fraser, “Solution concepts in hypergames,” Applied
Mathematics and Computation, vol. 34, no. 3, pp. 147–171, 1989.

[34] R. R. Vane and P. E. Lehner, “Using hypergames to increase planned payoff and reduce
risk,” Autonomous Agents and Multi-Agent Systems, vol. 5, pp. 365–380, 2002.

[35] N. S. Kovach and G. B. Lamont, “Trust and deception in hypergame theory,” in 2019 IEEE
National Aerospace and Electronics Conference (NAECON), pp. 262–268, IEEE, 2019.

[36] D. M. Kilgour, K. W. Hipel, and L. Fang, “The graph model for conflicts,” Autom., vol. 23,
pp. 41–55, 1987.

[37] J. T. House and G. V. Cybenko, “Hypergame theory applied to cyber attack and defense,”
in Defense + Commercial Sensing, 2010.

[38] B. L. Slantchev, “The principle of convergence in wartime negotiations,” American
Political Science Review, vol. 97, pp. 621 – 632, 2003.

[39] C. N. Gutierrez, S. Bagchi, H. Mohammed, and J. Avery, “Modeling deception in
information security as a hypergame–a primer,” in Proceedings of the 16th Annual
Information Security Symposium, p. 41, CERIAS-Purdue University, 2015.

[40] N. S. Kovach, “A temporal framework for hypergame analysis of cyber physical systems in
contested environments,” 2016.

[41] B. Gharesifard and J. Cortes, “Evolution of Players’ Misperceptions in Hypergames Under
Perfect Observations,” IEEE Transactions on Automatic Control, vol. 57, pp. 1627–1640,
July 2012.

[42] B. Gharesifard and J. Cortés, “Stealthy deception in hypergames under informational
asymmetry,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44,
no. 6, pp. 785–795, 2013.

[43] Y. Sasaki, Subjective rationalizability in hypergames. Hindawi Publishing Corporation,
2014.

[44] S. Zamir, Bayesian games: Games with incomplete information. Springer, 2020.

[45] S. Morris, “The common prior assumption in economic theory,” Economics and
Philosophy, vol. 11, pp. 227 – 253, 1995.

[46] J. Y. Halpern, “Characterizing the common prior assumption,” Microeconomic Theory
eJournal, 1998.

148

[47] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From patches to
honey-patches: Lightweight attacker misdirection, deception, and disinformation,” in
Proceedings of the 2014 ACM SIGSAC conference on computer and communications
security, pp. 942–953, 2014.

[48] Y. Sasaki and K. Kijima, “Hierarchical hypergames and bayesian games: A generalization
of the theoretical comparison of hypergames and bayesian games considering hierarchy of
perceptions,” Journal of Systems Science and Complexity, vol. 29, pp. 187–201, 2016.

[49] N. M. Fraser and K. W. Hipel, “Solving complex conflicts,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 9, no. 12, pp. 805–816, 1979.

[50] K. W. Hipel and N. Fraser, Conflict analysis. North-Holland, 1990.

[51] K. Kijima, “Intelligent poly-agent learning model and its application,” Information and
Systems Engineering, vol. 2, pp. 47–61, 1996.

[52] Y. Sasaki, N. Kobayashi, and K. Kijima, “Mixed extension of hypergames and its
applications to inspection games,” in Proceedings of the 51st Annual Meeting of the
ISSS-2007, Tokyo, Japan, 2007.

[53] J. Dubra, F. Maccheroni, and E. A. Ok, “Expected utility theory without the completeness
axiom,” Journal of Economic Theory, vol. 115, no. 1, pp. 118–133, 2004.

[54] J. A. Baier and S. A. McIlraith, “Planning with preferences,” AI Mag., vol. 29, pp. 25–36,
2008.

[55] M. Bienvenu, C. Fritz, and S. A. McIlraith, “Specifying and computing preferred plans,”
Artificial Intelligence, vol. 175, no. 7-8, pp. 1308–1345, 2011.

[56] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-violating control
strategy synthesis with safety rules,” in Proceedings of the 16th international conference
on Hybrid systems: computation and control, pp. 1–10, 2013.

[57] T. Wongpiromsarn, K. Slutsky, E. Frazzoli, and U. Topcu, “Minimum-violation planning
for autonomous systems: Theoretical and practical considerations,” in 2021 American
Control Conference (ACC), pp. 4866–4872, IEEE, 2021.

[58] H. Rahmani and J. M. O’Kane, “What to do when you can’t do it all: Temporal logic
planning with soft temporal logic constraints,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6619–6626, IEEE, 2020.

[59] N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences using weighted
signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2020.

[60] M. Lahijanian and M. Kwiatkowska, “Specification revision for markov decision processes
with optimal trade-off,” 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 7411–7418, 2016.

149

[61] M. Li, A. Turrini, E. M. Hahn, Z. She, and L. Zhang, “Probabilistic preference planning
problem for markov decision processes,” IEEE transactions on software engineering, 2020.

[62] J. Fu, “Probabilistic planning with preferences over temporal goals,” 2021 American
Control Conference (ACC), pp. 4854–4859, 2021.

[63] R. Nau, “The shape of incomplete preferences,” 2006.

[64] E. A. Ok et al., “Utility representation of an incomplete preference relation,” Journal of
Economic Theory, vol. 104, no. 2, pp. 429–449, 2002.

[65] S. O. Hansson and T. Grüne-Yanoff, “Preferences,” in The Stanford Encyclopedia of
Philosophy (E. N. Zalta, ed.), Metaphysics Research Lab, Stanford University, Spring
2022 ed., 2022.

[66] A. Sen, “Maximization and the act of choice,” Econometrica, vol. 65, 1997.

[67] J. J. Thomson, “Killing, letting die, and the trolley problem.,” The Monist, vol. 59 2,
pp. 204–17, 1976.

[68] A. N. Kulkarni, H. Luo, N. O. Leslie, C. A. Kamhoua, and J. Fu, “Deceptive labeling:
hypergames on graphs for stealthy deception,” IEEE Control Systems Letters, vol. 5, no. 3,
pp. 977–982, 2020.

[69] A. N. Kulkarni, M. S. Cohen, C. A. Kamhoua, and J. Fu, “Integrated resource allocation
and strategy synthesis in safety games on graphs with deception,” 2023.

[70] A. N. Kulkarni and J. Fu, “Synthesis of deceptive strategies in reachability games with
action misperception,” 2020.

[71] A. Kulkarni and J. Fu, “Opportunistic synthesis in reactive games under information
asymmetry,” 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 5323–5329,
2019.

[72] L. Li, H. Ma, A. N. Kulkarni, and J. Fu, “Dynamic hypergames for synthesis of deceptive
strategies with temporal logic objectives (under review),” 2020.

[73] A. Kulkarni and J. Fu, “Opportunistic qualitative planning in stochastic systems with
incomplete preferences over reachability objectives,” 2023 American Control Conference
(ACC), pp. 3541–3547, 2022.

[74] B. Gharesifard and J. Cortés, “Stealthy Deception in Hypergames Under Informational
Asymmetry,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44,
pp. 785–795, June 2014.

[75] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Algorithms for omega-regular
games with imperfect information,” Logical Methods in Computer Science, vol. 3, 2007.

[76] E. Filiot, N. Jin, and J.-F. Raskin, “Antichains and compositional algorithms for ltl
synthesis,” Formal Methods in System Design, vol. 39, pp. 261–296, 2011.

150

[77] A. N. Kulkarni and J. Fu, “A Compositional Approach to Reactive Games under Temporal
Logic Specifications,” in American Control Conference, pp. 2356–2362, IEEE, 2018.

[78] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[79] Z. Manna and A. Pnueli, “A hierarchy of temporal properties (invited paper, 1989),” in
Proceedings of the ninth annual ACM symposium on Principles of distributed computing,
pp. 377–410, 1990.

[80] R. Pı́bil, V. Lisỳ, C. Kiekintveld, B. Bošanskỳ, and M. Pěchouček, “Game theoretic model
of strategic honeypot selection in computer networks,” in International Conference on
Decision and Game Theory for Security, pp. 201–220, Springer, 2012.

[81] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe, “Computing optimal
randomized resource allocations for massive security games,” in Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1,
pp. 689–696, 2009.

[82] K. E. Heckman, F. J. Stech, R. K. Thomas, B. Schmoker, and A. W. Tsow, “Cyber denial,
deception and counter deception,” Advances in Information Security, vol. 64, 2015.

[83] W. Bai and J. Bilmes, “Greed is still good: maximizing monotone submodular+
supermodular (bp) functions,” in International Conference on Machine Learning,
pp. 304–313, PMLR, 2018.

[84] R. A. Rosenbaum, “Sub-additive functions,” Duke Mathematical Journal, vol. 17, no. 3,
pp. 227 – 247, 1950.

[85] E. Hille and R. S. Phillips, Functional analysis and semi-groups, vol. 31. American
Mathematical Soc., 1996.

[86] V. V. Vazirani, “Approximation algorithms,” Approximation Algorithms, 2001.

[87] S. Jajodia, V. Subrahmanian, V. Swarup, and C. Wang, Cyber Deception. Springer, 2016.

[88] J. Bernet, D. Janin, and I. Walukiewicz, “Permissive strategies: from parity games to safety
games,” RAIRO-Theoretical Informatics and Applications-Informatique Théorique et
Applications, vol. 36, no. 3, pp. 261–275, 2002.

[89] V. Švábenský, P. Čeleda, J. Vykopal, and S. Brišáková, “Cybersecurity knowledge and
skills taught in capture the flag challenges,” Computers & Security, vol. 102, p. 102154,
2021.

[90] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons Inc., 2005.

[91] S. Myagmar, A. J. Lee, and W. Yurcik, “Threat modeling as a basis for security
requirements,” in Symposium on requirements engineering for information security
(SREIS), vol. 2005, pp. 1–8, Citeseer, 2005.

151

[92] D. Fudenberg and J. Tirole, Game theory. 1991.

[93] J. K. Goeree, C. A. Holt, and T. R. Palfrey, “Stochastic game theory for social science: A
primer on quantal response equilibrium,” Handbook of Experimental Game Theory,
pp. 8–47, 2020.

[94] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” in Formal
Methods for the Design of Computer, Communication and Software Systems: Performance
Evaluation (SFM’07) (M. Bernardo and J. Hillston, eds.), vol. 4486 of LNCS (Tutorial
Volume), pp. 220–270, Springer, 2007.

[95] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided Verification
(CAV’11) (G. Gopalakrishnan and S. Qadeer, eds.), vol. 6806 of LNCS, pp. 585–591,
Springer, 2011.

[96] L. Li and J. Fu, “Topological approximate dynamic programming under temporal logic
constraints,” in 2019 IEEE 58th Conference on Decision and Control (CDC),
pp. 5330–5337, Dec 2019.

[97] A. M. Polansky, “Detecting change-points in markov chains,” Computational statistics &
data analysis, vol. 51, no. 12, pp. 6013–6026, 2007.

[98] M. Basseville, I. V. Nikiforov, et al., Detection of abrupt changes: theory and application,
vol. 104. Prentice Hall Englewood Cliffs, 1993.

[99] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity of solving markov
decision problems,” arXiv preprint arXiv:1302.4971, 2013.

[100] D. Bouyssou, D. Dubois, and M. Pirlot, Concepts & Methods of Decision-Making. John
Wiley & Sons Inc., 2009.

[101] S. O. Hansson, The structure of values and norms. Cambridge University Press, 2001.

[102] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata theory, languages,
and computation,” Acm Sigact News, vol. 32, no. 1, pp. 60–65, 2001.

[103] G. R. Santhanam, S. Basu, and V. Honavar, Representing and reasoning with qualitative
preferences: Tools and applications. Springer, 2016.

[104] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems from
temporal logic specifications,” IEEE Transactions on Automatic Control, vol. 53, no. 1,
pp. 287–297, 2008.

[105] K. Chatterjee and T. A. Henzinger, “A survey of stochastic ω-regular games,” Journal of
Computer and System Sciences, vol. 78, no. 2, pp. 394–413, 2012.

152

BIOGRAPHICAL SKETCH

Abhishek Ninad Kulkarni received his bachelor’s degree in electrical engineering from

Vishwakarma Institute of Technology, Pune, India, in 2012 and Master of Science in robotics

engineering from Worcester Polytechnic Institute, Worcester, MA, USA, in 2021. He received his

Ph.D. degree from the ECE Department at the University of Florida in 2023. His research

interests include game theory, formal methods with applications to sequential decision-making in

robotics, and cyber-physical systems security.

153

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	ABSTRACT
	Introduction
	Aim of this Dissertation
	Contributions of this Dissertation.

	Background on Game and Hypergame Theory
	Games on Graphs
	Temporal Logic and Automata
	Hypergame Theory

	Synthesis with Misperception of Labeling Function
	Effect of Labeling Misperception
	Static Hypergame on Graph
	Stealthy Deceptive Sure Winning Strategy
	Stealthy Deceptive Almost-Sure Winning Strategy

	Decoy Allocation Problem
	Modeling and Problem Formulation
	P2's Subjectively Rationalizable Strategy
	Stealthy Deceptive Sure Winning Strategy
	Stealthy Deceptive Almost-Sure Winning Strategy
	Compositional Synthesis for Decoy Placement
	Experimental Evaluation

	Synthesis with Misperception of Action Capabilities
	Effect of Action Misperception
	Dynamic Hypergame on Graph
	P2's Subjectively Rationalizable Strategy
	Deceptive Sure Winning Strategy
	Deceptive Almost-Sure Winning Strategy

	Case Study: Capture-the-Flag Game on Gridworld

	Synthesis with Misperception of Specifications
	Opportunistic Strategies in Games with Specification Misperception
	Effect of Specification Misperception on Ignorant P2
	Static Hypergame on Graph
	Characterization of State Space
	Synthesis of Opportunistic Strategy
	Case Study: Robot Motion Planning

	Deceptive Strategies under Specification Misperception
	Effect of Specification Misperception on Informed P2
	Dynamic Hypergame on Graph
	Synthesis of Deceptive Strategy
	Case study: Robot Motion Planning

	Planning with Incomplete Preferences over Temporal Goals
	PrefScLTL: A Language to Specify Preferences over Temporal Objectives
	Preference Automaton
	Solution Concepts
	Synthesis of Opportunistic Preference Satisfying Strategies
	Example: Robot Motion Planning in Stochastic Gridworld

	Conclusion and Perspectives
	Achievements and Perspectives
	Future Work

	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

