
A Compositional Approach to Reactive Games under Temporal Logic
Specifications

Abhishek Ninad Kulkarni and Jie Fu

Abstract— We study the problem of compositional synthesis
of controllers for reactive games with linear temporal logic
(LTL) specifications. A reactive game is an abstraction of the
interaction between a controllable system and its uncontrolled
and dynamic environment. A centralized control design for such
systems under complex specifications can be computationally
expensive. Instead, a compositional approach aims to synthesize
a controller for a complex specification by composing the
solutions for its component sub-specifications. This mitigates
the issue of scalability and has the advantages of being modular
and flexible. This paper solves the problem of reactive game
synthesis using the compositional approach in two steps. First,
we use the notion of randomized permissive strategy to reduce
the strategy synthesis problem to that of identifying only the
winning region for the controlled agent against the uncontrolled
environment. Then, we exploit the inherent compositional na-
ture of LTL formulas to compose the independently computed
winning regions of two sub-games into a superset of the
composed-game winning region. We make use of elementary
set operations to construct this superset. Finally, we introduce
an iterative algorithm to extract the exact winning region from
the superset. We prove the correctness of our proposed method
and illustrate the solution using a toy-problem and a robot
motion planning example.

I. INTRODUCTION

The interactions between a robot and its dynamic, uncon-
trolled environment can be captured as a two-player, zero-
sum game [1]. For such a game, the reactive synthesis aims to
compute a winning strategy, or equivalently a controller, for
the robot with respect to a given temporal logic specification
against all admissible behaviors of its environment. Recently,
reactive synthesis has been investigated intensively for sys-
tems that interact with open, dynamic, and uncontrollable
environments. The synthesis of such controllers has been
explored for various applications such as hardware design
[2], control of autonomous robotic systems [3–5], and under
various classes of temporal logic constraints such as linear
temporal logic, µ-calculus, and signal temporal logic [6]. In
addition, several software tools [7–9] have been developed
to facilitate the design process.

In spite of the recent advances, several challenges remain
open in the current framework. On one hand, for complex
temporal logic constraints, reactive synthesis suffers from the
problem of scalability because the size of the game grows
doubly-exponential in the size of the specification [1]. On the
other hand, most practical systems are required to undergo

J. Fu is with Faculty of Electrical and Computer Engineering, Robotics
Engineering Program, Worcester Polytechnic Institute, Worcester, MA.
01609, USA jfu2@wpi.edu

A. Kulkarni is with Robotics Engineering Program, Worcester Polytech-
nic Institute, Worcester, MA. 01609, USA ankulkarni@wpi.edu

G × Aϕ

ϕ

G

π0

G

G × Aϕ1

G × Aϕ2

ϕ1

ϕ2

Iterative
Contraction

π0

Win1r

Win2r

1

Fig. 1. Centralized Solution vs. Compositional Solution for ϕ = ϕ1 ∧ϕ2

several iterations of specification revision during the design
process. When a task specification is composed of several
sub-specifications and the synthesis cannot find a controller,
it is often expensive to identify the conflicting specifications
leading to the unrealizability of the overall specification.

To address these challenges, we investigate the com-
positional synthesis approach in this work. For a global
task specification composed of several sub-specifications,
ϕ = ϕ1 ∧ .. ∧ ϕn, the solution by compositional synthe-
sis first solves for the controllers of the individual sub-
specifications ϕi, i = 1..n and then composes them into
a single controller that satisfies ϕ. We propose a method
of compositional synthesis that only uses elementary set-
theoretic operations. First, we consider a class of Linear Tem-
poral Logic (LTL) specification represented as a conjunction
of sub-specifications, which can be equivalently translated
to a deterministic finite-state automaton (DFA). Then, for
each sub-specification, a reactive controller is synthesized by
constructing a two-player, zero-sum game, which is a product
of the specification automaton and the transition system [10].
Then, with the insight from the synthesized controllers and
the intersection product of sub-specification automata, we
introduce a method to construct the winning region of the
global reactive game by composing the winning regions
of the games constructed from sub-specifications. Finally,
we show how to extract a controller from the constructed
winning region for the global specification using random-
ized permissive strategies. Figure 1 pictorially compares the
proposed solution with the centralized solution.

In the literature, compositional synthesis has been inves-
tigated in [11], where the authors propose a compositional
synthesis for multi-agent decoupled systems with local spec-

ifications. However, our problem formulation is different.
We assume that the global specification is represented as a
conjunction of sub-specification (or alternatively in its con-
junctive normal form) and show that the centralized solution
can be composed of the solutions of this system with respect
to sub-specifications. In [12], the authors propose a composi-
tional framework for treating multiple linear-time objectives
inductively and synthesis in a cascade manner: Namely, given
ϕ = ϕ1 ∧ . . . ∧ ϕn, a controller is first synthesized for
the system with task ϕ1, and then ϕ2 is enforced onto the
system that satisfies ϕ1, and so on. While this approach
manages to reduce the required number of computations,
it does not fully address the problem of scalability. This is
because the composition operation is still sequential. Close to
our formulation and solution approach is the reference [13]
that provides a compositional algorithm that approximates
the specification using k-co-Büchi Automata, from which the
strategy can be synthesized by solving for the corresponding
safety games that have a partial order structure. Comparing
with the aforementioned approaches, the proposed method in
this paper can be used to compose any two sub-specifications
with each other independently and in any arbitrary order.
This allows the composition to be done in a completely
parallel manner, thus providing a significant computational
advantage.

The rest of the paper is organized as follows: Section II
provides the necessary preliminaries in the centralized re-
active synthesis using game theoretic solutions. Section III
presents the main algorithm for the compositional reactive
synthesis for an LTL formula with two sub-specifications and
its proof of correctness. Section IV validates the correctness
of our method with a toy example and a robot motion plan-
ning example. Section V concludes the paper and discusses
our future work.

II. PRELIMINARIES

Given two sets S and A, a set-valued function f : S → 2A

is defined for s ∈ S if f(s) 6= ∅.
Reactive system as a game: A deterministic game arena

capturing the interaction between a robot and its dynamic
environment is

GTS = 〈S,A, T, s0,AP, L〉
where the components are defined as follows.
• S = Sr ∪ Se is the set of states. At each state in Sr,

the robot takes an action and at each state in Se, the
environment takes an action.

• A = Ar ∪ Ae is the set of actions. For a given state
s ∈ S, the set A(s) represents the set of the enabled
actions from state s.

• T : S ×A→ S is the deterministic transition function.
• AP is a set of atomic propositions.
• s0 ∈ S is the initial state of the game.
• L : S → 2AP is the labeling function.
A game arena is called turn-based if the two players

always take turns in playing the game. By the inclusion of
empty action λ, a turn-based game arena can capture the

case when one player performs multiple actions before the
other player acts. A game arena is said to be reachable if
any state s ∈ S is reachable with a sequence of actions
from the initial state. In this work, we consider only the
turn-based and reachable game arenas. Although concurrent
actions are not considered in the scope of this work, it turns
out a large class of reactive systems can be captured as turn-
based games, such as reactive robot motion planning [3],
nonlinear systems with exogenous disturbance [4].

Game arena is also referred to as a game transition system
or a reactive system [14]. A run in GTS is a finite sequence
ρ = s0s1 . . . sn ∈ Q∗ of states, where ∗ represents the
Kleene star, or an infinite sequence ρ = s0s1... ∈ Sω , such
that s0 is the initial state and for all i ≥ 0 there exists ai ∈ A,
T (si, ai) = si+1. As mentioned earlier, this paper considers
the specifications that can be represented by a DFA, which
accepts finite runs. The prefix u of a run ρ is a finite sequence
of states such that there exists a run w and ρ = uw. The set of
prefixes of all runs in the game arena G is denoted Pref(G).

Strategy: For both the players, the robot and the envi-
ronment, a deterministic strategy for the player is a function
πi : S∗ → Ai ∪ {⊥}, where i ∈ {r, e} and ⊥ means
undefined. For example, for any run ρ = s0s1 . . . sn that
ends up with environment’s state sn ∈ Se, the strategy
πr(ρ) = ⊥. A randomized strategy for a player is a function
πi : S∗ × (Ai ∪ {⊥}) → [0, 1]. That is, given the run ρ for
which the strategy πi is defined, the strategy πi outputs a
probability distribution over action set Ai.

Specification: We consider system specifications in the
form of LTL formulas. Formally, the set of LTL formulas
over a finite set AP of atomic propositions can be defined
inductively as follows:

• Any atomic proposition p ∈ AP is an LTL formula.
• If φ and ψ are LTL formulas, so are ¬φ, φ∧ψ,©φ and
φUψ where © and U are temporal modal operators
for “next” and “until”.

Additional temporal logic operators include ♦ (eventually)
and � (always), defined by ♦φ := trueUφ and φ :=
¬♦¬φ.

Particularly, we consider a subset of LTL formulas ϕ
that can be equivalently translated into a DFA Aϕ =
〈Q, 2AP , δ, I, F 〉 where Q is a finite state set, 2AP is the
alphabet and AP is a set of atomic propositions, I ∈ Q
is the initial state, and δ : Q × 2AP → Q the transition
function. The acceptance condition F is a set of final states.
The run for an finite word w = w[0]w[1] . . . ∈ (2AP)∗ is
a finite sequence of states q0q1 . . . qn where q0 = I and
qi+1 = δ(qi, w[i]). A run ρ = q0q1 . . . is accepting in Aϕ if
Occ(ρ)∩F 6= ∅ where Occ(ρ) is the set of states that occurs
in the run ρ. With this winning condition, we can make all
the final states F as sink states. That is, for any q ∈ F and
for any σ ∈ 2AP , δ(q, σ) = q.

The product game: Given a game transition system
GTS and a DFA, Aϕ, as described above, the product
game is given by G = GTS × Aϕ = 〈S̃, A,∆, s̃0, F̃ 〉 with
components defined as follows:

• S̃ = S ×Q is the set of states, partitioned into the set
S̃r = Sr × Q of the robot’s states, and the set S̃e =
Se ×Q of the environment’s states.

• The map ∆ : S̃ × A → S̃ is the transition function,
defined as ∆((s, q), a) = (s′, q′) with s′ = T (s, a) and
q′ = δ(q, L(s′)).

• The initial state is s̃0 = (s0, q0) where s0 =
∆(I, L(s0)).

• The set F̃ = {(s, q) | q ∈ F} specifies the winning
condition.

A run ρ ∈ S̃∗ is winning for the robot if Occ(ρ)∩F̃ 6= ∅. A
run ρ ∈ S̃ω is winning for the environment if Occ(ρ)∩ F̃ =
∅.

Given the product game, a sure winning strategy for the
robot is a memory-less, deterministic strategy πr : Winr →
Ar where Winr ⊆ S̃r is the set of states from which the
robot can force a win. This winning set is computed using the
attractor set computation defined as a fix-point construction
as

• Win0
r = F̃

• Winkr = Wink−1r ∪
{s ∈ S̃r | ∃α ∈ A(s) : ∆(s, α) ∈Wink−1r } ∪
{s ∈ S̃e | ∀α ∈ A(s) : ∆(s, α) ∈Wink−1r }

The complement of Winr with respect to S̃ is the set Wine
of winning states for the environment. For any state s̃ ∈
Winr, by following the strategy πr, the robot is ensured to
win the game G.

A. Problem statement

For a specification represented as a conjunction of sub-
specifications, ϕ = ϕ1 ∧ .. ∧ ϕn, if n is small, then the
centralized solution may be sufficient to decide the winning
strategies and winning regions for players. However, for
large n, the doubly-exponential blow-up of the state-space
makes the centralized solution to be impractical to used in
robotics applications. To mitigate this issue, we propose to
use a compositional approach. Namely, if the specification
is decomposed into a conjunction of sub-specifications, then
we obtain the solutions independently for each sub-game
constructed from the game arena and a sub-specification,
and then compose the winning strategies and regions in a
meaningful way so as to ensure that the overall specification
is satisfied. Formally, our problem is stated as follows:

Problem 1. Let G be a reactive game and let ϕ = ϕ1∧ . . .∧
ϕn be an LTL specification represented as a conjunction
of n ≥ 2 formulas. Let Winkr , πkr represent the winning
region and winning strategy for the robot in k-th sub-game.
Similarly, let Winke , πke represent the corresponding winning
region and strategy for the environment. If Winr, πr represent
the robot’s winning strategy and strategy in the game for
global specification ϕ, then how to represent Winr, πr in
terms of Winkr , πkr , Winke and πke for k = 1 . . . n?

Henceforth in this paper, we shall refer to the games
corresponding to the sub-specifications, ϕk, as the sub-

games of the global game, which corresponds to the global
specification, ϕ.

III. PARALLEL SYNTHESIS UNDER LTL CONSTRAINTS

In this section, we present a solution to Problem 1. In our
solution, we first show how to use the randomized permissive
strategies to reduce the problem of determining the winning
region and strategy to the problem of only computing the
winning region. Then we show how to construct a superset
of the global winning region using the winning regions and
strategies for two sub-games. Finally, we introduce a fix-
point method to extract the global winning region from this
superset without having to construct the global game.

A. Computing permissive strategies through randomization

We recall the synthesis algorithm for a reactive game as
given in [14]: For a game G = 〈S̃, A,∆, s̃0, F̃ 〉, the winning
region can be partitioned into the level-sets as Winr =⋃m
i=0Xi and a corresponding deterministic winning strategy

is given by πr : Winr → Ar. Given a state s̃ ∈ Winr, there
exists a unique ordinal i such that s̃ ∈ Xi. If s̃ ∈ S̃r ∩ Xi

for some i > 0, then after applying πr(s̃), the robot reaches
a state in Xi−1. If s̃ ∈ S̃e ∩ Xi, regardless of the action
the environment takes, the next state is in Xi−1. The game
terminates when s̃ ∈ X0, which equals F̃ .

Theorem 1. Given a game, G = 〈S̃, A,∆, s̃0, F̃ 〉, let
Winr ⊆ S̃ be the winning region for the robot. Given a
randomized strategy πr : Winr ×Ar → [0, 1], satisfying the
following conditions: For all α ∈ Ar, πr(s̃, a) > 0 if and
only if ∆(s̃, a) ∈ Winr. then, by following the strategy πr,
the robot is ensured to win the game with probability one.

Proof. By following this randomized strategy πr, the robot
is ensured to stay within Winr, regardless of how the
environment acts. Moreover, in each state s̃ ∈ S̃r ∩Xi, there
is a strictly positive probability to reach Xi−1. Thus, the
probability of reaching X0 as the number of steps approaches
infinity is 1. Because, for any number n, the probability
that the state has not reached Xj for j < i is not more
than (1 − γ)n < 1 as γ = min(s̃,a)∈S̃×A πr(s̃, α) ∈ (0, 1).
Therefore, the probability of eventually visiting X0, which
equals F̃ , is ensured to be 1.

This theorem enables us to obtain a winning strategy
only with the knowledge of the winning region and the
game transition function. Thus, the problem of synthesizing
a strategy that satisfies a conjunction of temporal logic
constraints can be reduced to the problem of deciding the
winning region for the robot under these constraints. This
understanding is fundamental to our proposed solution to
compositional synthesis. As we will show that the winning
region for the robot given a conjunction ϕ = ϕ1 ∧ ϕ2 of
LTL sub-specifications can be computed in a compositional
manner, by solving for the winning regions of the sub-games
G1 and G2.

B. Composition of the winning regions and strategies

Given ϕ = ϕ1 ∧ ϕ2, we construct the sub-game Gi =
GTS×Aϕi

= (S̃i, A,∆i, s̃i0, F̃
i) for i = 1, 2. To solve for a

meaningful composition of the winning regions of sub-games
G1 and G2, we analyze the set inclusion of the winning
regions. We note that the game corresponding to global
specification is equal to the game defined by computing
the product of game transition system and the intersection
product of sub-specification automata, i.e. GTS × Aϕ =
GTS × (Aϕ1

⊗ Aϕ2
), where ⊗ represents the intersection

product operation of two DFAs [15].
Note that we assume all the specification automata in the

consideration to be complete. That is, for any state and action
pair, the transition is defined. An incomplete automaton can
be completed by introducing a sink state and directing all
undefined transitions to the sink state [15].

Next, we will use elementary set operations on the sub-
game winning regions and strategies to construct a superset
of the global winning region. Let Win1

r , Win2
r denote the

robot’s winning regions in sub-games G1 and G2. Similarly,
Win1

e, Win2
e denote the corresponding environment’s winning

regions. Let Winr, Wine denote the winning regions for the
robot and the environment in the global game. Then we
define the following two sets,

Win∧r = {(s, q1, q2) ∈ S̃r | (s, q1) ∈Win1
r ∧ (s, q2) ∈Win2

r}
Win∨e = {(s, q1, q2) ∈ S̃e | (s, q1) ∈Win1

e ∨ (s, q2) ∈Win2
e}

(1)

Intuitively, the Win∧r captures all the robot’s states in the
global game such that the corresponding sub-game states
are both winning for the robot. Similarly, Win∨e captures
all the environment’s states in the global game from which
the environment can force a win in either of the sub-games.
define a set Win12

r as follows:

Win12
r = Win∧r ∪ (S̃e \Win∨e)

Lemma 1. Given Win∧r and Win∨e defined in (1), let the set
Win12

r be defined as,

Win12
r = Win∧r ∪ (S̃e \Win∨e)

Then, the set Win12
r is a superset of the winning region Winr.

Win12
r ⊇Winr

Proof. For a state s̃ = (s, q1, q2) ∈Win∧r , at which the robot
makes a move, it is ensured that there exist two winning
strategies π1

r and π2
r for the robot in the games G1 and

G2, respectively. When (s, q2)
π1
r(s,q1)−−−−−→ (s′, q′2) /∈ Win2

r ,

or, (s, q1)
π2
r(s,q2)−−−−−→ (s′, q′1) /∈ Win1

r , then we cannot ensure
that s̃ ∈Winr. In other words, it is possible that the winning
strategy in one sub-game makes a losing move for other.

On the other hand, for a state s̃ = (s, q1, q2) ∈Winr∩ S̃r,
a winning strategy πr exists to ensure winning in both the
games G1 and G2. Thus, witnessed by the winning strategy
πr, (s, q1) ∈Win1

r and (s, q2) ∈Win2
r . Therefore s̃ ∈Win∧r .

Thus, we have Winr ∩ S̃r ⊆Win∧r .

For a state s̃ = (s, q1, q2) ∈ Win∨e , which is a state when
the environment makes a move, it is ensured that there exists
at least one winning strategy πie to ensure the specification
i ∈ {1, 2} is not satisfied. For s̃ ∈ S̃ \ Win∨e , the robot
could ensure to win either sub-game G1 or G2. However, s̃
may not be in Winr because there may not exist a strategy
to ensure all specifications are satisfied. On the other hand,
taking a state s̃ ∈ Winr ∩ S̃e, it is ensured that no matter
how the environment behaves, there exists a strategy for the
robot to satisfy ϕ1 ∧ ϕ2 and hence s̃ ∈ S̃e \Win∨e .

C. Iterative construction of superset to global winning re-
gion

In this section, we introduce an iterative method to elim-
inate the spurious states that are contained in Win12

r but not
in Winr. Let π1

r , π2
r represent the deterministic sub-game

winning strategies for the robot. We define the progress set
as the set of all the one-step reachable states from a given
state (s, q1, q2), such that the robot makes progress in at least
one sub-game while staying inside the winning region for the
other. The progress set for a sub-game i can be represented
as,

progi(s, q1, q2;V) = {(s, q1, q2) ∈ S̃r |
∃α ∈ A(s), (s, q1, q2)

α−→ (s′, q′1, q
′
2) ∈ V ∧

((s′, q′j) ∈Winjr ∧ α ∈ πir(s, qi))
}

where V ⊆Win12
r , and (i, j) ∈ {(1, 2), (2, 1)}. We define

prog(s, q1, q2;V) = prog1(s, q1, q2;V) ∪
prog2(s, q1, q2;V)

Using this definition, we define the iterative construction
of Win12

r as follows

1) V 0 = Win12
r

2) V̄ = {(s, q1, q2) ∈ V k | s ∈ Sr ∧ prog(s, q1, q2, V
k) =

∅} ∪ {(s, q1, q2) ∈ V k | s ∈ Se ∧ ∃α ∈ A(s) s.t.
∆((s, q1, q2), α) /∈ V k}

3) V k+1 = V k \ V̄
4) Repeat (2), (3) until the fix-point V m+1 = V m is

reached.

Informally, the algorithm starts with the set Win12
r , which

is a superset of the winning region Winr. Then, it iteratively
removes the states where the winning action for one game
means losing for another sub-game or the states from where
the environment can take the transition to a state outside of
the winning region computed at the iteration k. We note that
during each iteration, V k is a superset of Winr. Therefore,
a state outside of V k is certainly losing for the robot. Next,
we prove this formally.

Lemma 2. For each iteration k, V k ⊇Winr.

Proof. By induction.
Base case: For k = 0, by using Lemma 1 we have

V 0 = Win12
r ⊇Winr.

Induction step: Assume for iteration k, V k ⊇ Winr.
We need to show that, at the iteration k+ 1, V k+1 ⊇Winr,
or equivalently show that V̄ ∩Winr = ∅.

By contradiction, suppose there exists s̃ = (s, q1, q2) ∈
V̄ ∩Winr. Then we have two cases,

Case a: ∃α ∈ Ae,∆(s̃, α) /∈ V k: Here, as V k ⊇Winr,
the action α of the environment leads to a state outside of the
winning region Winr. Thus, s̃ /∈Winr — a contradiction.

Case b: prog(s̃;V k) = ∅: The progress set can be
empty if and only if for all α ∈ A(s), if (s, q1, q2)

α−→
(s′, q′1, q

′
2) ∈ V , then both ((s′, q′1) /∈Win1

r ∨α /∈ π2
r(s, q2))

and (α /∈ π1
r(s, q1)∨ (s′, q′2) /∈Win2

r) are true. For (s′, q′1) /∈
Win1

r ∨ α /∈ π2
r(s, q2) to hold true, either the robot is losing

in first game if action π2
r(s, q2) = α is applied, or the

environment can indefinitely block the robot for making any
progress in the second game. Similar reasoning can be done
for the progress set of sub game 2. Therefore, we require
that s̃ /∈Winr — a contradiction.

Theorem 2. The fixed point V = V m+1 = V m satisfies

V = Winr.

Proof. The proof is by construction. First, we denote {Xk
i |

i = 1, . . . ,mk} the level sets of sub-game k with respect to
the winning region Winkr , for k = 1, 2 and mk is the total
number of level sets.

We consider a (class of) randomized strategies π∗ : (V ∩
S̃r) × Ar → [0, 1] defined as follows: π∗(s̃, α) > 0 for all
α ∈ prog(s̃;V) and π∗(s̃, α) = 0 if α /∈ prog((s̃;V).

Given a state s̃ ∈ S̃r where the robot makes a move, let
(s, q1) ∈ X1

i and (s, q2) ∈ X2
j , for some 0 < i ≤ m1

and 0 < j ≤ m2. It is clear that every move made by
the robot ensures that for the next state s̃′ = ∆(s̃, α) with
α ∈ prog(s̃;V), either (s′, q′1) ∈ X1

i−1 or (s′, q′2) ∈ X2
j−1.

In other words, the robot will make progress in at least
one of the sub-games. Suppose that α = π1

r(s, q1), then
the game arrives at (s′, q′1). By definition of the winning
strategy for the robot, it is guaranteed that for any action β of
the environment, the next state (s′′, q′′1) = ∆1((s′, q′1), β) ∈
X1
i−2, when i > 2 or (s′′, q′′1) ∈ S×F1 when the robot wins

the sub-game 1. A similar argument can be derived for the
sub-game 2.

Now, let’s consider the case when during a finite run ρ =
s̃0 . . . s̃n ∈ S̃∗, for any s̃i ∈ Sr×F1×Q2 where i = 0, . . . , n,
it holds that prog1(s̃i;V) 6= ∅ and prog2(s̃i;V) = ∅. Thus,
by the above reasoning, the robot is guaranteed to reach one
of the states in S × F1 × Q2 for some finite step n ≤ m1

and win the sub-game 1. After reaching s̃n = (s, q1, q2) with
q1 ∈ F1, the state (s, q2) is ensured to be within Win2

r for
sub-game 2 by definition of Winir and progi, for i = 1, 2.
Thus, by exercising the winning strategy in sub-game 2, the
robot is then ensured to visit S×F1×F2 in the game G×Aϕ
because all states in F1 are sink states in the automaton. The
above argument shows that it is impossible to only win one
sub-game but not the other. That is to say, any state s̃ ∈
(Sr×Q1×Q2)∩V has to be in Winr. For the environment’s
state s̃ ∈ (Se × Q1 × Q2) ∩ V , it is ensured that the next

state stays within V and is a state in Sr ×Q1 ×Q2. Since
we have show for all states in Sr×Q1×Q2 ∩V is winning
for the robot, the state s̃ ∈ V is winning for the robot too.
Given the state s̃ is arbitrarily picked, we have all states in
Se × Q1 × Q2 ∩ V is winning for the robot, which means
V ⊆Winr. Together with Lemma 2, it holds that V = Winr.

Remark: So far, we have presented the method and
proof of pairwise composition. To realize the composition
of n controllers for n subspecifications, we can use pairwise
composition between n subspecifications, and then employ
a tree structure between subspecifications to synthesize a
controller for the global policy. For instance, given ϕ =
ϕ1∧ϕ2∧ϕ3, a pairwise composition will provide controllers
for ϕ12 := ϕ1 ∧ϕ2 and ϕ23 := ϕ2 ∧ϕ3. The winning region
for the global specification is composed again with pairwise
construction from the winning regions of subgames with
ϕ12 and ϕ23. Another approach is to modify the progress
set computation so as to capture safe actions in multiple
subgames instead of one. In this manner, the composition
can be done in one shot. However, this one shot composi-
tion may not be desirable if there are possible conflicting
subspecifications, which could have been detected if we use
the pairwise composition approach.

IV. EXPERIMENTS

We illustrate the working of our proposed method using
a toy problem and a robot motion planning problem below.
The first problem is a handcrafted game with eight states.
We demonstrate the construction of Win12

r from sub-game
winning regions and strategies and show that it is a superset
of the global winning region Winr. Then, we explain the
iterative construction process step-by-step to show how it
removes all the spurious states.

In the second problem, we solve a robot motion planning
problem in the presence of an adversarial robot using the
proposed method and the centralized method. The imple-
mentation is scripted using Python on a laptop with Intel(R)
Core(TM) i7 processor and 16GB of RAM. The specification
automata are generated using Spot 2 tool [16].

A. Toy problem

Consider the game arena as shown in Figure 2. The game
is a two player game with the robot states drawn in circles
and the environment states drawn as rectangles. The action
associated with each transition is shown as edge label in
Figure 2. Therefore, the actions for the robot and the environ-
ment are given by Ar = {01, 02, 30, 35, 40, 41, 46, 70, 77},
Ae = {13, 15, 24, 51, 53, 57, 67} respectively.

Next, we consider the following objective for the robot,
visit state 7 and visit state 5 in any sequence. This is
represented as compositional LTL formula ϕ = ϕ1 ∧ ϕ2,
where ϕ1 = ♦ (s = 7) and ϕ2 = ♦ (s = 5) with equivalent
automaton as shown in Fig. 3. The automaton for ϕ is shown
in Fig. 4.

By solving for the individual sub-games and the global
game we have the sets as shown below. We note that for every

s0start

s1 s3 s5

s7

s2 s4 s6

01

02

13

15

24

35

30

41

46

57

53

51

67

77

1

Fig. 2. 8-State Game Graph

0start 1

¬b

b

True

1

Fig. 3. Automata for LTL Formula ♦ a

winning state in Winr, we can find a unique state in each
of Win1

r and Win2
r , whose composition defines the winning

state. For example, consider the state (2, 1, 0) ∈ Winr, we
have (2, 1) ∈Win1

r and (2, 0) ∈Win2
r .

Win1
r = {(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1),

(7, 1), (0, 0), (2, 0), (3, 0), (4, 0), (6, 0)}

Win1
e = {(1, 0), (5, 0)}

Win2
r = {(0, 1), (1, 1), (2, 1), (3, 1), (4, 1),

(5, 1), (6, 1), (7, 1), (0, 0), (1, 0),

(2, 0), (3, 0), (4, 0), (5, 0), (6, 0)}
Win2

e = ∅
Winr = {(0, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (6, 0, 0),

(0, 1, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0), (4, 1, 0),

(6, 1, 0), (7, 1, 0), (0, 0, 1), (2, 0, 1), (3, 0, 1),

(4, 0, 1), (6, 0, 1), (0, 1, 1), (1, 1, 1), (2, 1, 1),

(3, 1, 1), (4, 1, 1), (5, 1, 1), (6, 1, 1), (7, 1, 1)}
Next, we compute the Win∧r and Win∨e sets as

Win∧r = {(0, 1, 0), (3, 1, 1), (4, 0, 0), (7, 1, 0), (0, 1, 1),

(4, 1, 0), (7, 1, 1), (3, 0, 1), (4, 1, 1), (0, 0, 1),

(3, 0, 0), (0, 0, 0), (4, 0, 1), (3, 1, 0)}
Win∨e = {(1, 0, 1), (5, 0, 1), (1, 0, 0)}

On constructing the set Win12
r , we observe that it has

4 spurious states that are not present in Winr, marked in

0 = (0, 0)start

2 = (1, 0)

3 = (0, 1)

1 = (1, 1)

¬a ∧ ¬b
a

b

¬b

b

¬a

a

True

1

Fig. 4. Automata for LTL Formula ♦ a ∧ ♦ b

boldface.

Win12
r = {(7, 1, 1), (4, 0, 1), (3, 0, 1), (0, 0, 1), (2, 0, 1),

(6, 0, 1), (0,0,0), (2,0,0), (3,0,0), (4,0,0)} (2)
Winr = {(7, 1, 1), (4, 0, 1), (3, 0, 1), (0, 0, 1), (2, 0, 1),

(6, 0, 1)} (3)

Now let us apply the iterative solution to contract Win12
r

into Winr. Consider the first iteration, k = 1, for the
state (s, q1, q2) = (4, 0, 0) with V 0 = Win12

r . We see
that π1

r(4, 0) = {46} and π2
r(4, 0) = {41}. Therefore,

prog(4, 0, 0;V 0) = ∅ and V 1 = V 0 \ {(4, 0, 0)}.
In the next iteration, k = 2, we observe that for the

environment, we have (2, 0, 0)
24−→ (4, 0, 0) 6∈ V 1. This

results in (2, 0, 0) ∈ V̄ and thus getting eliminated. Similarly,
we observe that the robot states (0, 0, 0) and (3, 0, 0) get
eliminated at k = 3, 4 respectively, because the actions 02
and 30 that are in non-empty progress set, can no longer
keep the robot inside V . Finally, we reach the fix point at
k = 5 with V 5 = V 4 = Winr.

B. Robot motion planning

Consider a 5 × 5 grid world with a controlled robot, an
uncontrolled robot, and static obstacles. We refer to the static
obstacles and the uncontrolled robot as the environment of
the controlled robot, henceforth referred to as the robot. In a
given turn, the robot can move into any of the 8-connected
adjacent cells. The environment can only make a move into
its 4-connected neighbors, horizontally or vertically. The Fig.
5 shows the grid world with regions of interest in green and
obstacle regions in red.

The Fig. 5 shows four regions marked as R1, R2, R3, R4.
The problem requires the robot to synthesize a controller to
satisfy the objective ϕ = ϕ1∧ϕ2, where ϕ1 = ♦(R1∨R2)∧
�(¬obs) and ϕ2 = ♦(R3 ∧ ♦R4) ∧�(¬obs). The first sub-
specification requires the robot to visit the regions R1 or R2

without colliding with any obstacles, while the second sub-
specification requires the robot to visit the region R3 first
and then the region R4.

R1 R2

R3

R4

Obs

Obs

1

Fig. 5. Grid-world Environment

Centralized Compositional
ϕ ϕ1 ϕ2

Size
(states)

Time
(sec)

Size
(states)

Time
(sec)

Size
(states)

Time
(sec)

Product
Game 7500 7.206 2500 1.032 3750 1.865

Attractor Set 4825 0.423 2450 0.106 2450 0.207
Iterative

Construction - - 0.821 sec

TABLE I
COMPARISON BETWEEN CENTRALIZED AND COMPOSITIONAL

We start by computing the product sub-games G1 =
GTS × Aϕ1

and G2 = GTS × Aϕ2
and the global game

G = GTS × Aϕ. It is straightforward to see that the
GTS has 5 · 5 · 5 · 5 · 2 = 1250 states. Correspondingly,
|G1| = 1250 ·2 = 2500 and |G2| = 1250 ·3 = 3750. For the
global game, the size of state space is |G| = 1250·6 = 7500.

With the naı̈ve implementation of the algorithms, the
centralized synthesis solution took 7.629 seconds to compute
the strategy for ϕ while the proposed method took 4.031
seconds. Furthermore, it is possible to solve for the sub-game
strategies in parallel, which might reduce the computation
time further to 2.893 seconds. The Table I shows the size
and time required for each step of the centralized solution
and the proposed method. The iterative construction process
requires two iterations to eliminate all the spurious states
from the Win12

r set. The winning regions of the composed
and global game have the equal size.

V. DISCUSSION AND CONCLUSION

The proposed algorithm for composing the strategies of
two sub-games runs in a polynomial time in the size of
sub-games, and linear in the number of sub-specifications.
Furthermore, the iterative construction is linear in the size
of the constructed superset. However, a major advantage
is that the approach does not construct the global game,
and enables a modular, compositional, and flexible reactive
synthesis approach. A modification in a sub-specification
does not necessitate reconstruction of the entire game from

scratch and then solving it again. We can reuse the previously
computed solutions of the other sub-games and combine
them with the solution of the new sub-game to obtain the
solution of the reactive system with its updated specification.
This enables us to develop an efficient verification and
synthesis toolbox for several practical systems, for example,
mobile robots, whose specifications are not complete and
constantly revised given the newly discovered constraints and
ad-hoc tasks.

Furthermore, the extension to specifications given by
Büchi automata is non-trivial as the intersection of Büchi
automata needs to include auxiliary information in the states,
instead of a direct Cartesian product of the state spaces of the
automata. This extension and the development of a toolbox
are our ongoing work.

REFERENCES

[1] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1989, pp. 179–190.

[2] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar,
“Synthesis of reactive (1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911–938, 2012.

[3] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” IEEE Robotics & Automation Magazine,
vol. 18, no. 3, pp. 65–74, 2011.

[4] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 7, pp. 1771–1785, 2013.

[5] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[6] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control. ACM, 2015, pp. 239–248.

[7] C. Finucane, G. Jing, and H. Kress-Gazit, “Designing reactive robot
controllers with ltlmop,” in Proceedings of the 9th AAAI Conference
on Automated Action Planning for Autonomous Mobile Robots. AAAI
Press, 2011, pp. 70–71.

[8] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“Tulip: a software toolbox for receding horizon temporal logic plan-
ning,” in Proceedings of the 14th international conference on Hybrid
systems: computation and control. ACM, 2011, pp. 313–314.

[9] R. Ehlers and V. Raman, “Slugs: Extensible gr (1) synthesis,” in
International Conference on Computer Aided Verification. Springer,
2016, pp. 333–339.

[10] E. Filiot, N. Jin, and J.-F. Raskin, “Compositional algorithms for ltl
synthesis,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2010, pp. 112–127.

[11] R. Alur, S. Moarref, and U. Topcu, “Compositional synthesis of reac-
tive controllers for multi-agent systems,” in International Conference
on Computer Aided Verification. Springer, 2016, pp. 251–269.

[12] C. Baier, J. Klein, and S. Klüppelholz, “A compositional framework
for controller synthesis,” in International Conference on Concurrency
Theory. Springer, 2011, pp. 512–527.

[13] E. Filiot, N. Jin, and J.-F. Raskin, “Antichains and compositional
algorithms for ltl synthesis,” Formal Methods in System Design,
vol. 39, no. 3, pp. 261–296, 2011.

[14] W. Thomas et al., Automata, logics, and infinite games: a guide to
current research. Springer Science & Business Media, 2002, vol.
2500.

[15] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.
MIT press, 2008.

[16] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0a framework for ltl and \omega -automata
manipulation,” in International Symposium on Automated Technology
for Verification and Analysis. Springer, 2016, pp. 122–129.

